
Exp in Particle Theory T5
Winter Semester
David Morrissey

Direct Detection of DM

1. QCD and Nucleons
The fundamental fields of QCD are quarks and gluons, but we know that these become strongly-
coupled at energies E ∼ ΛQCD ' 200 MeV. At energies below this, the relevant degrees of
freedom are nucleons and mesons. We can describe their low-energy interactions perturbatively
by writing an effective field theory for them. The tricky part is that we don’t know how to predict
what these interactions should be from the underlying theory of quarks and gluons because of
their very strong interactions. Even so, we can match many aspects between the two theories by
making use of the underlying symmetry properties. The remaining gaps can be filled by lattice
simulations of QCD.

a) Let’s apply these ideas to direct detection. Suppose the underlying DM-quark interactions
are

−L ⊃ χ̄χ

 ∑
q=u,d,s

dq q̄q +
∑

Q=c,b,t

dQ Q̄Q

 . (1)

We want to convert this into an effective χ-nucleon interaction. For the light quark couplings,
lattice QCD gives

〈ñ(p4)|mq q̄q |ñ(p2)〉 = mñf
(ñ)
Tq

ū4u2 (2)

for some constants f
(ñ)
Tq

, and ū4 = ū(p4, s4) and u2 = u(p2, s2) are polarization spinors. We

also know that 〈ñ(p4)| ¯̃nñ |ñ(p2)〉 = ū4u2 for nucleon fields. In the case of dQ = 0 for all
the heavy quarks, what χ-nucleon effective interaction would reproduce the effects of the
underlying quark interactions (i.e. give the same matrix elements between nucleon states)
given Eq. (2)?

b) In general, there will also be a contribution to the effective χ-nucleon interaction from heavy
quarks. The effect of integrating them out at one-loop order is to generate the effective
interactions obtained by making the replacements

Q̄Q→ − 2αs
24πmQ

GaµνG
aµν (3)
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wherever Q̄Q appears in the Lagrangian. What is the resulting low-energy effective La-
grangian in terms of only the light quarks q and the gluon field Gaµν?

c) Given that we also have an induced χ̄χGaµνG
aµν interaction, we need to relate it as well to

a nucleon interaction. Let us define

〈ñ|GaµνGaµν |ñ〉 = − 8π

9αs
f
(ñ)
TG
mñ . (4)

It turns out that we can relate f
(ñ)
TG

to the constants for light quarks. To do this, we should
look at the divergence of the dilatation current, which is just the trace of the improved
energy-momentum tensor, Θµ

µ (see Ch.19.5 of Peskin&Schroeder). The Lagrangian of QCD
is invariant under scale transformations (x → λx, q → λ−3/2q, Aaµ → λ−1Aaµ) when the
quark masses vanish. Quantum effects also break the invariance in the form of the running
of strong coupling. As a result, the divergence of the dilatation current is equal to these
breaking effects:

Θµ
µ =

∑
q=u,d,s

mq q̄q −
9αs
8π

GaµνG
aµν . (5)

The first term comes from the explicit breaking by quark masses while the second term comes
from the quantum breaking effect, with the coefficient of the second piece being proportional
to the beta function of QCD with three light flavours. We can also write a dilatation current
for the low-energy theory with nucleon fields:

Θµ
µ = mpp̄p+mnn̄n+ . . . . (6)

Since both descriptions of QCD describe the same underlying theory, the dilatation current
operators in the two cases must be equivalent in the sense that they have the same matrix

elements. Use this fact to relate f
(ñ)
TG

to the f
(ñ)
Tq

constants.

d) Put all these pieces together to find the effective χ couplings to protons and neutrons.

2. Spin-Dependent Cross Sections
(Borrowed from notes by P. Salati: http://inspirehep.net/record/776274)

a) The matrix element for χ-nucleus scattering from the spin-dependent AA DM-quark inter-
action is

M = 2
√

2GFΛN 〈χ(p3, s3)| χ̄γµγ5χ |χ(p1, s1)〉 〈N(p4; J,mf )|Sµ |N(p2; J,mi)〉 . (7)

Sum this over final states and average it over initial states, treating the DM particle χ as a
fundamental fermion, the nucleus as a non-relativistic system with total spin J (and magnetic
states m = −J,−J + 1, . . . , J), and assuming that the operator Sµ is Hermitian, to show
that:

“|M|2” = 8κ2G2
FΛ2

N

1

2(2J + 1)
χµνNµν , (8)
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where

χµν = tr
[
(/p3 +mχ)γµγ5(/p1 +mχ)γνγ5

]
(9)

and

Nµν =
∑
mi,mf

〈J,mf |Sµ |J,mi〉 〈J,mi|Sν |J,mf 〉 . (10)

b) Work out the trace for χ in the usual way, and simplify it in the lab frame in the extreme
non-relativistic limit v → 0 (so that v → 0 and p1 = p3 = (mχ,~0). You can also drop any
terms that will give zero when you contract with the symmetric tensor Nµν .

c) Simplify and evaluate NµνX
µν . For this, use the fact that Sµ → (0, ~J) in the non-relativistic

limit, where ~J is the familiar spin operator, and apply the simple form of χµν found in b).
Note also that for the nuclear matrix elements, we are implicitly assuming a relativistic nor-
malization of 〈J,m1|J,m2〉 = 2Eδm1,m2 , where E is the energy of the state.

d) Put everything together to show that “|M|2” ∝ G2
FΛ2

N J(J + 1).
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