

Thermal Equilibrium, Entropy Injection and a Cross-section

1 Decoupled Species Revisited

This part is a rerun of the last bit of Tutorial 1. Please skip this part if you have already finished tutorial 1.

Suppose a massless relativistic particle species V in equilibrium with the cosmological plasma at time t_{fo} suddenly stops interacting at all with itself or anything else. After this happens, the expansion of spacetime will dilute the number density of V particles as a^{-3} energy of each V particle will redshift as a^{-1} .

- a) What is the contribution of V to the energy density of the Universe today?
- b) Rewrite this result in terms of temperatures and g_{*s} factors assuming entropy conservation after t_{fo} .
- c) One can show that the distribution function for V particles tracks the equilibrium form, but with a different effective temperature for the V particles. What is this effective temperature today in terms of the photon temperature and the number of effective degrees of freedom g_* ? *Hint:* $\rho(T) = \pi^2 g_*(T) T^4/30$ for this distribution function.

2 Entropy Injection

Consider a Universe consisting of a thermal plasma of light particles together with a heavy particle ψ of mass M and density n_{ψ} . Suppose ψ is long-lived, and decays instantaneously at time t_{ψ} when the radiation temperature is $T_{\psi} \ll M$.

- a) Using energy conservation, compute the radiation temperature of the plasma immediately after the decay in terms of T_{ψ} and $n_{\psi}(t_{\psi})$. You may assume that g_* remains constant.
- b) What does this do to the entropy density of the Universe?
- c) Suppose we also have a decoupled DM species χ with freeze out temperature T_{fo} , and T_{ψ} is much smaller than T_{fo} and m_{χ} , and whose contribution to the energy density is negligible until long after t_{ψ} . If the temperature of the plasma after the decay is also below T_{fo} , what is the relic density of χ relative to what it would have been if $n_{\psi}(t_{\psi}) = 0$? You should assume that no χ particles are produced by the ψ decays.
- d) If the temperature after the decay is much larger than T_{fo} and m_{χ} , what is the χ density today compared to what it would have been with $n_{\psi}(t_{\psi}) = 0$? Hint: if χ thermalizes, any initial relic density reaches the thermal value.

3 A Cross-section

Consider the following interaction lagrangian between dark matter fermion χ , a scalar field ϕ and some other fermion f

$$\mathcal{L} \supset \lambda \phi \bar{f} \chi + \text{h.c.}$$

Assuming that $m_f = 0$ compute the averaged and spin-summed (amplitude)² for the following diagram in the limit $m_{\phi}^2 \gg m_{\chi}^2$:

