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Having spent a considerable amount of time discussing the creation of dark matter, we
turn next to investigate ways to detect it. Our galaxy is surrounded by a halo of dark
matter (DM). Every so often, a DM particle in the halo might scatter off an atomic nucleus
and produce an observable signal. Looking for DM in this way is called direct detection (DD).
In this note we describe how to compute this signal, and we outline the current experimental
status of direct dark matter searches.

1 Dark Matter and Us

The DM in the Milky-Way halo has a distribution of densities and velocities. At our
location in the galaxy the local energy density of DM is estimated to be ρ⊙ ≃ 0.3 GeV/cm3.
Simulations of the DM halo suggest that the velocity distribution reaches a steady state that
is approximately Gaussian:

f(~v) ≃
(

1

πv20

)3/2

e−v2/v2
0 ×N Θ(vesc − v) , (1)

with v0 ≃ 220 km/s. The second factor includes a step function to account for the fact that
DM particles with speed v > vesc can escape the galaxy, as well as factor of N ≃ 1 to correct
the normalization of the truncated distribution to unity (

∫

d3v f(~v) = 1).

Most of the visible material in our galaxy is located in the galactic disk. It is about
0.3 pc thick, roughly 20 kpc in radius, and is rotating about the galactic center relative to
the apparently stationary galactic halo. Our star, the Sun, is located in the disk about
8.5 kpc from the galactic center, and is rotating along with everything else. We illustrate the
situtation in Fig. 1. Due to the motion of the sun together with our own motion relative to
the sun, we have a net speed relative to the DM halo of

vE ≃ 230 km/s + (15 km/s) cos[ω(t− t0)] , (2)

where the first term comes from the motion of the sun with the galatic rotation and the
second from the orbital motion of the Earth around the Sun. Not surprisingly the frequency
is ω = 1/(1 yr), while the phase is such that the relative motion is maximized on t0 = June 2.

The distribution of DM velocities in the halo together with our net motion relative to the
halo imply that we see a net flux of DM. This flux can scatter off targets in the laboratory,
potentially producing an observable signal.
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Figure 1: Cartoon of our galaxy, including the DM halo. (Note: not to scale!)

2 Scattering Rates off Nuclei

The quantity of interest for DM direct detection is the rate of nuclear recoils per unit recoil
energy per unit detector mass. This rate is just the convolution of the DM flux with the
differential scattering cross section, multiplied by the target density. Specifically, we have

dR

dER
= nT

(

ρχ
mχ

)
∫

d3v′ v′ flab(~v
′)
dσN

dER
, (3)

where nT is the density per unit mass of the target nucleus, dσN/dER is the differential DM-
nucleus scattering cross section, and flab(~v

′) is the distribution of DM velocities ~v′ in the lab
frame. Note that this distribution is slightly different from the halo-frame distribution given
in Eq. (1). However, since ~v′ = ~v + ~vE , we have d3v = d3v′ and

flab(~v
′) = f(~v′ − vE) . (4)

The only thing left to specify is the differential cross section.

Before attempting to compute the cross section, it is worth examining the kinematics
of a DM-nucleus scattering event. A typical event consists of a DM particle from the halo
with speed v ∼ 10−3 colliding with a nucleus that is effectively at rest. In the lab frame, the
momentum transferred to the nucleus is

q = 2µN v cos θ , (5)

where µN = mNmχ/(mN +mχ) is the DM-nucleus reduced mass and θ ∈ [0, π/2] is the angle
of the scattered nucleus relative to the initial DM direction, as illustrated in Fig. 2. For
mχ ∼ mN ∼ 100 GeV, the typical momentum transfer is q ∼ 100 MeV. The kinetic energy
imparted to the recoiling nucleus is

ER =
q2

2mN

=
2µ2

Nv
2 cos2 θ

mN

, (6)

which implies ER ∼ 100 keV for typical masses. Fortunately, nuclear recoil energies of this
size can be probed by a number of existing detector technologies.
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Figure 2: Kinematics of direct detection.

3 DM-Nucleus Scattering Cross Sections

Computing a DM-nucleus scattering cross section involves three steps. Starting from a
theory of DM, the first step is to determine how the DM particle χ couples to quarks and
gluons. The second step is to convert this interaction among elementary particles to a
coupling of χ to composite nucleons. Once this is done, the DM-nucleon coupling must
then be translated into an effective interaction between χ and the even-more composite
target nucleus of interest. These three steps require aspects of elementary particle physics,
hadronic physics, and nuclear physics.

Just like there are many possible DM candidates, there are also many ways by which a
DM particle can interact with quarks and gluons. Some popular examples for a fermionic
DM particle χ are:

SS : dq χ̄χ q̄q, dG χ̄χGa
µνG

aµν , (7)

VV : bq χ̄γ
µχ q̄γµq, (8)

AA : aq χ̄γ
µγ5χ q̄γµγ

5q . (9)

These are all higher-dimensional operators, and thus the couplings dq, bq, aq must have mass
dimension equal to minus two, while the dg coupling to gluons has mass dimension of minus
three.1 The labels SS, VV, and AA refer to the spin and parity of the fermion bilinears they
contain: SS stands for scalar-scalar (f̄ f is a Lorentz scalar), VV stands for vector-vector
(f̄γµf is a Lorentz vector), and AA stands for axialvector-axialvector (f̄γµγ5f is a Lorentz
axialvector). A similar classification can be used when the DM particle is a boson.

These operators should be thought of as low-energy effective interactions rather than
fundamental couplings. The SS operators can be induced by the exchange of a heavy scalar
boson (such as a Higgs), while the VV operators can be generated by the exchange of a heavy
vector (such as the Z0). This is an excellent approximation when the momentum exchanged
q ∼ (100 MeV) is much smaller than the mass M of the mediator particle. In this case,
dq, bq, aq ∝ gχgq/M

2, where gχ,q are the couplings of the mediator to DM and quarks. The

1Recall that any operator in the Lagrangian must have a mass dimension of four, and that fermion fields

have mass dimension 3/2 and boson fields have mass dimension one.
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coupling to gluons in Eq. (7) can be generated by a DM coupling to heavy quarks (like the
top) that is closed into a loop and connected to a pair of gluons.

Besides SS, VV, and AA operators, we could also have mixtures like V A or other Lorentz
structures such as PP (P = pseudoscalar – f̄γ5f). These are not usually considered because
they predict scattering cross sections that are proportional to the momentum transfer or the
DM velocity. Since these quantities are numerically very small (v2 ∼ 10−6), DM scattering
through Lorentz structures other than SS, VV, and AA are expected to be very suppressed.
These conclusions also carry through for bosonic DM particles.

3.1 Spin-Independent Scattering – SS

The SS and VV operators give rise to spin-independent (SI) scattering of DM, where the
total DM-nucleus coupling is a coherent superposition of the DM couplings to individual
nucleons. These couplings are therefore able to produce much larger scattering rates than
interactions that do not have this coherent property, and many of the experimental searches
for DM have concentrated on them.

Consider first the SS operators dqq̄q χ̄χ, dQQ̄Q χ̄χ, and dGGa
µνG

aµν χ̄χ, where q = u, d, s
refer to the light quarks and Q = c, b, t refer to the heavy quarks. If we were interested only
in the scattering of DM with quarks or gluons, it would be straightforward to compute the
corresponding cross sections. Instead, we need to find the scattering with nucleons induced
by these operators. Once we have this, we can convert them into scattering cross sections
with nuclei.

As a warm up, let us first do the case of χ scattering with a quark mediated by the
operator dq q̄q χ̄χ. Since this is just an example, we will pretend that the quark is a free
particle with mass mq. The matrix element for the process χ(p1) + q(p2) → χ(p3) + q(p4)
from this operator is2

M = 〈q(p4)χ(p3)| dq q̄q χ̄χ |χ(p1)q(p2)〉 (10)

≃ dq 〈q(p4)| q̄q |q(p2)〉 〈χ(p3)| χ̄χ |χ(p1)〉 (11)

= κ dq ū(p4, s4)u(p2, s2) ū(p3, s3)u(p1, s1) , (12)

where the u(p, s) factors are four-component spin polarizations and κ = 1 (2) if χ is Dirac
(Majorana). 3 In the extreme non-relativistic limit, where all momenta are much smaller
than the masses, the summed and squared matrix element (averaged over initial states and
summed over final states) in this case reduces to

“|M|2′′ = κ2 d2q (4mqmχ)
2 . (13)

All this should be familar from your QFT class.

2Here and in the the discussion to follow, the matrix elements of position-space operators are implicitly

Fourier-transformed into momentum space to give the scattering matrix elements.
3 In the Majorana case, there are two contractions of the operator instead of the one for Dirac, and the

κ factor accounts for this.
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Figure 3: Diagram representing the loop connecting the dQ Q̄Qχ̄χ operator to a gluon
effective operator with nucleons.

The next step is to convert this result into scattering with a nucleon n, where n = p, n.4

For the light quarks, q = u, d, s, it can be shown that at low momentum transfer (q ≪ mn)

〈n(p4)| q̄q |n(p2)〉 =
mn

mq

f
(n)
Tq

ū4u2 , (14)

where f
(n)
Tq

is a coefficient that must be extracted non-perturbatively and ū4u2 = ū(p4, s4)u(p2, s2)
is a convenient shorthand for the spin polarizations of the initial and final nucleons. This
result is just like what we had for the case of quark scattering, but with an additional

prefactor (f
(n)
Tq

) and the initial and final quark states replaced by nucleon states.

Nucleon scattering can also be induced by operators with heavy quarks or gluons. In
the case of the gluonic operator dG χ̄χGa

µνG
aµν , the corresponding result at low-momentum

transfer (q ≪ mn) is

〈n(p4)|Ga
µνG

aµν |n(p2)〉 = − 8π

9αs
f
(n)
TG

mn ū4u2 , (15)

where αs = g2s/4π is the strong coupling, and the nucleon spin polarization stuff is the same

as before. The coefficient f
(n)
TG

in this expression can be shown to be related to the coefficients
of the light quarks according to

f
(n)
TG

= 1−
∑

q=u,d,s

f
(n)
Tq

. (16)

The derivation of this relation will be covered in a tutorial.

The heavy quark operators dQQ̄Q χ̄χ, Q = c, b, t, also contribute to nucleon scattering.
They do so through loops that connect the heavy quarks to a pair of gluons, as shown in
Fig. 3. As far as nucleon matrix elements are concerned, the net result of these loops is to
make the replacements

Q̄Q → − 2αs

24πmQ

Ga
µνG

a µν . (17)

4 Sorry about the abuse of notation.
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We are now ready to put everything together.

Suppose the complete set of SS effective couplings is

−L ⊃
∑

q=u,d,s

dq q̄q χ̄χ +
∑

Q=c,b,t

dQ Q̄Q χ̄χ + dGGa
µνG

aµν χ̄χ . (18)

For low momentum transfer (q ≪ mn), this gives the summed and squared matrix element

“|M|2′′ = κ2f 2
n (4mnmχ)

2 , (19)

where the effective χ-nucleon coupling fn (n = p, n) is

fn
mn

=
∑

q=u,d,s

f
(n)
Tq

dq
mq

+
2

27

∑

Q=c,b,t

f
(n)
TG

dQ
mQ

− 8π

9αs

dGf
(n)
TG

. (20)

This result is equivalent to writing an effective Lagrangian that couples the DM particle χ
directly to nucleons:

−Leff ⊃ fp χ̄χ p̄p+ fn χ̄χ n̄n , (21)

with fp and fn given by Eq. (20). Note that this effective Lagrangian is only valid for
low momentum transfers, q ≪ mn. It is now straightforward to integrate the summed and
squared matrix element over phase space to get the differential cross section

dσn

dq2
=

κ2

4π

1

v2
f 2
n , (22)

where q = |~p4| is the momentum of the outgoing nucleon.

The third and final step is to convert the nucleon result to a scattering cross section with
a nucleus, comprised of Z protons and (A−Z) neutrons. For SI operators, the contributions
to the amplitude from each of the constituent nucleons add coherently at zero momentum
transfer. This implies

dσ

dq2

∣

∣

∣

∣

q2=0

=
κ2

4π

1

v2
[Zfp + (A− Z)fn]

2 . (23)

When the momentum transfer approaches the inverse size of a nucleon, the DM collision
starts to become sensitive to the underlying nucleon structure of the nucleus and some of
the coherence is lost. To account for this, a form factor F (ER) is introduced,

dσ

dER
= 2mN

dσ

dq2

∣

∣

∣

∣

q2=0

F 2
N(ER) , (24)

where the factor of 2mN converts between ER and q2. The form factor FN(ER) can be
related to the Fourier transform of the nucleon density. A popular approximation is the
Woods-Saxon form:

F 2
N(ER) =

[

3j1(qR1)

qR1

]2

e−(qs)2 , (25)
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where s ≃ 1 fm, j1 is a spherical Bessel function, q =
√
2mNER, and R1 =

√
R2 − 5s2 for

R = 1.2A1/3 fm.

Even though dσN/dER depends on the recoil energy through the form nuclear form
factor, it is standard practice to define an effective energy-independent nuclear scattering
cross section σ̄N by

σ̄N =

∫ 4µ2

N v2

0

dq2
dσ

dq2

∣

∣

∣

∣

q2=0

=
κ2

π
µ2
N [Zfp + (A− Z)fn]

2 . (26)

3.2 Spin-Independent Scattering – V V

Computing the nuclear scattering cross section from a VV operator of the form bq χ̄γ
µχ q̄γµq

is very similar to the SS case discussed above, but with a few nice simplifications. These
are related to the fact that for any fermion f , the operator jµf = f̄γµf is the number density

current, with j0f being the number density of fermions minus antifermions, and ~jf the spatial
number current. On the SM side, this implies that the q̄γµq part of the operator is closely
related to the electromagnetic current density, which we know is conserved. On the DM
side, the important implication is that χ̄γµχ vanishes when χ is a Majorana fermion with
no distinct antiparticle.

Following our previous treatment, consider first the elastic scattering of χ with a quark
q at low momentum transfer (q ≪ mq, mχ). The matrix element is

M = bq ū(p4, s4)γ
µu(p2, s2) ū(p3, s3)γµu(p1, s1) . (27)

Doing the spin sums and averages, this becomes

“|M|2′′ = b2q(4mqmχ)
2 . (28)

Nothing new here.

To convert this result to scattering with a nucleon and then with a nucleus, we can make
use of the nice property of the SM part of the VV operator. Since this operator just counts
the net quark content, the effective DM-nucleon operator is just

−Leff ⊃ fp χ̄χ p̄p+ fn χ̄χ n̄n , (29)

with

fp = 2bu + bd (n = p = uud) (30)

fn = bu + 2bd (n = n = udd) . (31)

The same trick works for converting the nucleon effective interaction to a scattering cross
section with nuclei, although we still need to include a form factor to account for a loss of
coherence at high energies. This form factor can be related to the Fourier transform of the
charge density in the nucleus. Since the charge density of a nucleus is usually expected to
trace the mass density, many analyses use the same Woods-Saxon form factor of Eq. (25).
With this additional approximation, the final result is then identical to the SS case, and
Eqs. (23,24) carry through to the VV case here as well.
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3.3 Spin-Dependent Scattering – AA

The AA operator leads to an interaction between χ and the spin of a nucleon. Thus, when
this nucleon effective interaction is converted into a total interaction with the target nucleus,
the contributions from the nucleon constituents no longer combine in a coherent way. Instead,
the induced nuclear interaction depends on the net spin state of the nucleus. Thus, scattering
mediated by AA operators is said to be spin-dependent (SD).

Going between the quark-level operator and the nucleon operator for the AA interaction
is a bit more complicated than for the SS and V V cases. As before, we consider the matrix
element of the q̄q operator between a pair of nucleons n = p, n:

〈n(p4)| q̄γµγ5q |n(p2)〉 = 2∆q(n) ū4s
µu2 , (32)

where sµ is the nucleon spin operator and ∆q(n) corresponds to the contribution of the quark
flavour q to the net nucleon spin. In the extreme non-relativistic limit, the spin operator
reduces to the familiar one-particle quantum-mechanical form, sµ → (0, ~J). Only the light
quarks (q = u, d, s) are expected to give non-negligible values of ∆q(n), whose numerical
values are extracted experimentally.

The result of Eq. (32) can be rewritten in terms of an effective nucleon interaction.
Starting from the AA quarks operators, the corresponding effective Lagrangian is

−Leff ⊃ 2
√
2GF ap χ̄γ

µγ5χ p̄sµp+ 2
√
2GF an χ̄γ

µγ5χ n̄sµn , (33)

where

an =
∑

q=u,d,s

aq√
2GF

∆q(n) (n = p, n) . (34)

The factors of the Fermi constant GF are conventional, and they make the an coefficients
dimensionless.

The next step is to convert the nucleon result to a matrix element for the target nucleus.
As for the SI operators, we will first compute the result at zero momentum transfer, and
then add a form factor to account for non-zero q2. With q2 → 0, the nuclear matrix elements
of the nucleon operators are (n = p, n)

〈Sµ
n〉 = 〈N | n̄sµn |N〉 , (35)

where Sµ
n is the contribution to the spin of the nucleus from the proton or the neutron. The

sum of these contributions can be related to the total nuclear spin by the Wigner-Eckart
theorem [1, 4], to give

ap〈Sµ
p 〉+ an〈Sµ

n〉 = Λ 〈N |Sµ |N〉 , (36)

where Sµ is the total spin operator of the nucleus, with Sµ → (0, ~J) in the non-relativistic
limit, and Λ is a constant of proportionality. To determine Λ, suppose we evaluate both
sides of Eq. (36) with µ = 3 = z between nuclear states with mJ = J :

Λ =
1

J
(ap〈Sp〉+ an〈Sn〉) , (37)
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where 〈Sp〉 := 〈N ; J,mJ =J |Sz
p |N ; J,mJ =J〉 and similarly for n. Values of 〈Sp〉 and 〈Sn〉

are tabulated for various types of nuclei.

We now have everything we need to compute the differential cross section at zero mo-
mentum transfer.5 The result is

dσN

dq2

∣

∣

∣

∣

q2=0

=
2κ2

π

G2
F

v2
Λ2J(J + 1) , (38)

where J is the total spin state of the target nucleus, and κ = 1 (2) for a Dirac (Majorana)
χ. To get the result at non-zero momentum transfer, we just multiply by a form factor

dσN

dER
= 2mN

dσN

dq2

∣

∣

∣

∣

q2=0

S(q2)

S(0)
, (39)

with

S(q2) = a20S00(q
2) + a0a1S01(q

2) + a11S11(q
2) , (40)

where a0 = ap+an and a1 = ap−an are the nuclear-isospin singlet and triplet combinations.
The functions Sij(q

2) have been computed for various nuclei and can be looked up.

As in the SI case, it is conventional to define an effective SD nuclear cross section by

σ̄SD
N = 4µNv

2 dσN

dq2

∣

∣

∣

∣

q2=0

=
8κ2

π
G2

F µ2
NΛ

2J(J + 1) . (41)

4 Experimental Status

Many experiments have attempted to discover dark matter through direct detection. Some
have even found an excess of events over the expected background, but the situation is far
from clear. We will attempt to give an overview of the latest results.

4.1 Limits on SI Scattering

The strongest limits on DM direct detection come from searches for SI scattering. These
scattering rates can be enhanced by a factor of A2 (or more) at low energies for the case of
fp = fn. Thus, many experiments use very heavy target nuclei to maximize this enhance-
ment. Since different experiments use different target materials, it is convenient to define
an effective SI cross section per nucleon so that we may compare the limits from different
experiments. The relevant quantity is

σSI =
1

A2

µ2
p

µ2
N

σ̄N =
κ2

π
µ2
p

[Zfp + (A− Z)fn]
2

A2
, (42)

5You’ll do this yourself in a tutorial.
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Figure 4: SI DD from xenon

where µp is the DM-proton reduced mass.

For DM masses above about 10 GeV, the best current limits on SI scattering come from
the XENON100 experiment. We show the excluded region in Fig. 4. As the name of the
experiment suggests, the target material in the detector is xenon, with an atomic mass in
the range of A = 131 (there are several stable isotopes), which gives a strong enhancement
of the nuclear cross section. The shape of the excluded region is easy to understand. At
lower DM masses, below about 50 GeV, µN → mχ and the recoil energy of the target xenon
nucleus begins to fall below the lower energy detection threshold of the experiment. Going
to higher masses, the local number density ρχ/mχ becomes smaller leading to fewer expected
scattering events.

While XENON100 gives very strong limits on SI scattering, a few other experiments have
found event rates that are larger than the expected backgrounds. The most visible of these
is the DAMA/Libra experiment, whose target is mainly NaI crystals [6]. This experiment
searches specifically for the annual modulation in scattering rates that is expected for DM
due to the variation in the DM flux with the motion of the Earth around the Sun. As can
be seen in Fig. 5, they do indeed find a significant modulation in their data. Moreover, the
phase of this modulation is consistent with the expectation for DM, with a maximum near
June 2 and a minimum near December 2. Many proposals have been made for a non-DM
explanation for their result, some of which have been ruled out [7], and others that are still
viable [8]. Other excesses are seen in the CoGeNT [9] and CRESST II [10] experiments.

An interpretation of these results in terms of DM with spin-independent scattering with
nuclei does not appear to work. In Fig. 6, we show a plot of the regions consistent with
a SI interpretation of the DAMA, CoGeNT, and CRESST II excesses together with the
regions excluded by other experiments. Although these exclusions are subject to a number
of systematic uncertainties, a SI explanation for the excesses seems to be ruled out. On
the other hand, non-standard SI scattering may be able to account for at least some of the
excesses while remaining consistent with other exclusions [11].
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Figure 5: Time variation of the scattering rate seen in the DAMA/NaI and DAMA/LIBRA
experiments. Plot from Ref. [6].

4.2 Limits on SD Scattering

Many experiments have also searched for SD scattering of DM using a variety of target
materials. To allow for a direct comparison of these results, it is also standard practice to
define effective SD cross sections for a single proton or neutron:

σ̄SD
p,n =

6κ2

π
G2

F µ2
p,n a

2
p,n , (43)

where we have used J = 1/2 and 〈Sp〉 = 〈Sn〉 = 1/2. Limits derived from nuclear data can
then be translated into limits on σ̄SD

p,n [13]. Frequently, this is done in an approximate way
by assuming that only one of ap or an is non-zero and deriving the corresponding limit on
σSD
p,n under this assumption. We show these in Fig. 7, taken from Ref. [14].

References

[1] G. Jungman, M. Kamionkowski, K. Griest and , “Supersymmetric dark matter,” Phys.
Rept. 267, 195 (1996) [hep-ph/9506380].

[2] J. Engel, S. Pittel, P. Vogel and , “Nuclear physics of dark matter detection,” Int. J.
Mod. Phys. E 1, 1 (1992).

[3] P. Salati, “Indirect and direct dark matter detection,” PoS CARGESE 2007, 009 (2007).

[4] P. Agrawal, Z. Chacko, C. Kilic, R. K. Mishra and , arXiv:1003.1912 [hep-ph].

[5] E. Aprile et al. [XENON100 Collaboration], Phys. Rev. Lett. 109, 181301 (2012)
[arXiv:1207.5988 [astro-ph.CO]].

[6] R. Bernabei et al. [DAMA Collaboration], “First results from DAMA/LIBRA and the
combined results with DAMA/NaI,” Eur. Phys. J. C 56, 333 (2008) [arXiv:0804.2741
[astro-ph]]; R. Bernabei et al. [DAMA and LIBRA Collaborations], “New results from
DAMA/LIBRA,” Eur. Phys. J. C 67, 39 (2010) [arXiv:1002.1028 [astro-ph.GA]].

11



WIMP Mass [GeV/c2]

C
ro

ss
−

se
ct

io
n 

[c
m2 ] (

no
rm

al
is

ed
 to

 n
uc

le
on

)

130327165801

  http://dmtools.brown.edu/ 
  Gaitskell,Mandic,Filippini

10
0

10
1

10
2

10
−44

10
−42

10
−40

10
−38

Figure 6: Limits on SI DM scattering from XENON100 (lower solid), XENON10 (dotted),
CDMS (dashed), and CRESST I (upper solid). Also shown are the best-fit regions for DAMA
(red filled), CoGeNT (blue filled), and CRESST II (green filled). This plot was made with
tools of Ref. [12].

[7] S. Chang, J. Pradler, I. Yavin and , “Statistical Tests of Noise and Harmony in Dark
Matter Modulation Signals,” Phys. Rev. D 85, 063505 (2012) [arXiv:1111.4222 [hep-ph]].

[8] J. Pradler, B. Singh, I. Yavin and , “On an unverified nuclear decay and its role in the
DAMA experiment,” Phys. Lett. B 720, 399 (2013) [arXiv:1210.5501 [hep-ph]].

[9] C. E. Aalseth et al. [CoGeNT Collaboration], “Results from a Search for Light-Mass
Dark Matter with a P-type Point Contact Germanium Detector,” Phys. Rev. Lett. 106,
131301 (2011) [arXiv:1002.4703 [astro-ph.CO]]; C. E. Aalseth, P. S. Barbeau, J. Colaresi,
J. I. Collar, J. Diaz Leon, J. E. Fast, N. Fields and T. W. Hossbach et al., “Search for
an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector,”
Phys. Rev. Lett. 107, 141301 (2011) [arXiv:1106.0650 [astro-ph.CO]].

[10] G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci, C. Ciemniak, G. Deuter
and F. von Feilitzsch et al., “Results from 730 kg days of the CRESST-II Dark Matter
Search,” Eur. Phys. J. C 72, 1971 (2012) [arXiv:1109.0702 [astro-ph.CO]].

[11] For example,
S. Chang, N. Weiner, I. Yavin and , “Magnetic Inelastic Dark Matter,” Phys. Rev. D 82,
125011 (2010) [arXiv:1007.4200 [hep-ph]].

[12] A fun website that makes plots of experimental limits on direct detection:
http://dmtools.brown.edu/ .

12

http://dmtools.brown.edu/


Figure 7: Limits on SD scattering of DM on nuclei. Plots from Ref. [14].

[13] D. R. Tovey, R. J. Gaitskell, P. Gondolo, Y. A. Ramachers, L. Roszkowski and , “A
New model independent method for extracting spin dependent (cross-section) limits from
dark matter searches,” Phys. Lett. B 488, 17 (2000) [hep-ph/0005041].

[14] [XENON100 Collaboration], “Limits on spin-dependent WIMP-nucleon cross sections
from 225 live days of XENON100 data,” arXiv:1301.6620 [astro-ph.CO].

13


	Dark Matter and Us
	Scattering Rates off Nuclei
	DM-Nucleus Scattering Cross Sections
	Spin-Independent Scattering – SS
	Spin-Independent Scattering – VV
	Spin-Dependent Scattering – AA

	Experimental Status
	Limits on SI Scattering
	Limits on SD Scattering


