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One of the leading candidates for thermal DM is a weakly-interacting massive parti-
cle (WIMP). This is a new particle that is massive, stable, and neutral, and that interacts
with the SM exclusively through the weak force (and possibly the Higgs). Such particles arise
in many theories that extend the Standard Model (SM), and they can provide the correct
DM density through thermal freeze out in a very natural way. For these reasons, they are
by far the most popular class of DM candidates.

1 The WIMP Miracle

It is very instructive to apply our approximate expressions for the freeze out temperature
and the relic density (Eqs. (26,29) in notes-2) to the case of a WIMP particle χ with a
mass close to the electroweak scale. The first thing we need is the annihilation cross section.
Without actually doing a calculation, we can estimate the parametric dependence of the
cross section by counting couplings and applying dimensional analysis. The cross section
has dimensions of (mass)−2 and the largest dimensionful quantity around is the mass of the
WIMP mχ. The cross section should also contain at least four factors of the weak coupling
constant g ≃ 0.65. Together, this gives

〈σv〉 ∼ g4

4π

1

m2
χ

≃ (1.7× 10−23cm3/s)

(
100 GeV

mχ

)2

. (1)

This is very crude, but it will do for our purposes.

Plugging our estimate into Eq. (26) in notes-2, we get

xf ≃ 27.9, Ωχh
2 ≃ 0.0002 . (2)

This is within a few orders of magnitude from what is needed to explain the observed DM
density. Given all the factors that go into the relic density, from particle physics stuff like
couplings and masses to cosmological quantities like the Hubble rate today, it is amazing
that a generic WIMP is so close to the correct answer. This surprising result is called the
WIMP miracle [1, 2, 3]. The motivation for WIMPs is strengthened even more by the fact
that we have many other particle physics reasons (unrelated to cosmology) to expect new
physics near the electroweak scale.

In passing, let us note that for xf ≃ 25−30, the value one obtains for a broad range of
DM masses and annihilation cross sections, the relic density is approximately

Ωχh
2 ≃ 0.1

(3× 10−26cm3/s)

〈σv〉 . (3)

This is a useful benchmark against which to compare quick estimates of the annihilation
cross section.
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2 Popular WIMP Candidates

For many reasons we expect that there exist new particles and forces (beyond the SM) with
masses near or the electroweak scale. The strongest reason to expect such new physics is
the electroweak hierarchy problem, which is that the scale of electroweak symmetry breaking
apears to be destabilized by quantum corrections. Proposals to solve this problem include
supersymmetry (SUSY), extra dimensions, and new strong forces. The WIMP miracle
described above gives a further piece of motivation for new physics at the electroweak scale.
Indeed, many extensions of the SM contain (or can accommodate) a WIMP DM candidate.

2.1 WIMPs from Supersymmetry

The most popular extension of the SM that addresses the hierarchy problem is supersym-
metry [4]. Exact supersymmetry predicts that every SM particle should have a superpartner
with the same mass and quantum numbers, but with a spin differing by half a unit. For
example,

fermion f ↔ f̃ sfermion
(s = 1/2) (s = 0)

gauge boson Aµ ↔ Ã gaugino
(s = 1′) (s = 1/2)

Higgs H ↔ H̃ Higgsino
(s = 0) (s = 1/2)

(4)

The minimal supersymmetric extension of the SM (MSSM) has a superpartner for every SM
particle, and basically nothing else. The lone exception is the Higgs sector, where two scalar
SU(2)L Higgs doublets Hu,d are required along with their Higgsino superpartners H̃u,d.

Supersymmetry stabilizes the electroweak scale by imposing a cancellation of quantum
corrections to the Higgs fields (which induce electroweak symmetry breaking) between SM
particles and their superpartners. The dangerous corrections cancel exactly if supersymmetry
is an exact symmetry of Nature. However, this would also imply the existence of scalar
electrons (selectrons) with the same mass as the electron, a possibility that is very firmly
ruled out. On the other hand, if supersymmetry is broken the superpartners can be heavier
than their SM counterparts. It turns out that broken supersymmetry can still protect the
electroweak scale as long as all the operators that break SUSY have couplings of positive
mass dimension that are not too large. This type of breaking is called soft because its effects
become negligible at energies much larger than the scale of the SUSY-breaking couplings.
By not too large, the quantitative requirement is msoft . 1000 GeV, which implies that
the superpartners must have masses close to this value. The LHC is currently probing this
regime.

Even with soft breaking, the addition of superpartners to the SM can lead to all sorts of
bad things happening, such as rapid proton decay, unless we also impose a further symmetry
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called R-parity.1 This is a Z2 symmetry under which all the SM particles are even and all
the superpartners are odd. As a result, superpartners must be created or destroyed in pairs,
and the lightest superpartner (LSP) is stable.

The LSP can be a viable DM candidate if it is uncharged and uncoloured. In the MSSM,
the two possibilities are the lightest the lightest sneutrino and the lightest neutralino. It
turns out that the MSSM sneutrino as DM is ruled out by direct searches for DM (although
it can work in extensions of the MSSM with additional gauge singlet fields). Thus, we will
focus here on the case of a neutralino LSP.

There are four neutralino states in the MSSM, which we will denote by χ0
i , i = 1, 2, 3, 4,

with the labels such that the masses are increasing, mχ1
≤ mχ2

≤ mχ3
≤ mχ4

. These four

neutralino states are linear combinations of the Bino (B̃0 = superpartner of the U(1)Y gauge

boson), Wino (W̃ 3 = superpartner of the neutral component of the SU(2)L gauge boson),

and the Higgsinos (H̃0
u, H̃

0
d = superpartners of the neutral components of the two Higgs

scalar doublets). Thus, we have

χ0
i = Ni1B̃

0 +Ni2W̃
0 +Ni3H̃d +Ni4H̃u , (5)

where Nij is a unitary mixing matrix. The mixing arises mostly from electroweak symmetry
breaking. Note that the four neutralinos are all Majorana fermions, meaning that they are
their own antiparticles.

In general, a mostly-Bino LSP annihilates inefficiently and produces too much DM
through thermal freeze out, while a mostly Wino or Higgsino LSP produces too little. This is
partly the result of the hypercharge gauge coupling being smaller than the SU(2)L coupling,
and partly due to the absence of other nearly degenerate states that help the self-annihilation
to be more efficient. An acceptable thermal relic density can be obtained, however, when
the LSP is a roughly equal mixture of the Bino and the other states [5]. There are also
some special cases where the annihilation of a Bino-like neutralino is enhanced and the relic
density comes out right. We will discusses some of the ways this can happen below.

2.2 WIMPs from an Extra Dimension

A second way to address (or at least recast) the hierarchy problem is to postulate one or
more extra dimensions of spacetime with a characteristic size of R ∼ TeV−1. Some of
these theories come with a Z2 reflection symmetry that can give rise to a viable WIMP DM
candidate.

The most popular example of this type of scenario is Universal Extra Dimensions (UED) [6].
In the simplest realization of UED, there is a flat fifth dimension of length R ∼ TeV−1

bounded on either end by four-dimensional surfaces called branes. This additional dimension
is assumed to be symmetric under reflection about its midpoint, and all the fields of the SM
are able to propagate within it. See Fig. 1 for an illustration.

1There are other possibilities as well, but R-parity is the simplest and most popular.
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Figure 1: Cartoon of UED. The field Φ represents a species from the SM allowed to propagate
in the fifth dimension.

Just like in four dimensions, the fundamental SM degrees of freedom (i.e. elementary
particles) are derived from quantum fields. However, these fields are now defined everywhere
in all five dimensions subject to boundary conditions at the brane boundaries. To illustrate
this, consider a real scalar field Φ(xµ, w) subject to the boundary condition

∂wΦ(x
µ, w)|w=0,R = 0 , (6)

where w ∈ [0, R] is the coordinate of the fifth dimension. Ignoring interactions, the La-
grangian of Φ is

S =

∫
d4x

∫
dw

1

2

[
(∂µΦ)

2 − (∂wΦ)
2 −M2Φ2

]
. (7)

We can recast this Lagrangian in a more familiar form by expanding the field Φ(x, w)
according to

Φ(x, w) =
1√
R

∞∑

n=0

φn(x) cos
(nπ
R
w
)
, (8)

for some coefficient fields φn(x). Note that any function of w on [0, R] subject to the boundary
conditions of Eq. (6) can be expanded in this way. Inserting Eq. (8) back into Eq. (7) and
integrating over w gives

S =

∫
d4x

∞∑

n=0

1

2

[
(∂µφn)

2 −
(
M2 +

n2π2

R2

)
φ2
n

]
. (9)

In this form, we see that the five-dimensional field can be recast into an infinite tower
of independent four-dimensional Kaluza-Klein (KK) modes, each with mass m2

n = M2 +
(nπ/R)2.
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Figure 2: Relic density of the LKP in minimal UED, including the effects of coannihilations
(dotted line). The other lines correspond to less complete calculations. Figure from Ref. [8]

This picture applies to all SM fields in UED. We identify the n = 0 zero mode with the
regular SM particle, while the higher modes make up the KK excitations of that particle.
The KK masses at level n are

mn =





√
m2
SM + (nπ/R)2 ; bosons

mSM + (nπ/R) ; fermions
. (10)

The KK partners of the SM are heavier due to the (nπ/R) contributions to their masses.

Interactions among SM fields and their KK partners are obtained by writing the usual SM
couplings in terms of the five-dimensional fields. When the extra dimension has a reflection
symmetry about its centre (as we assume in UED), these interactions respect a new Z2

symmetry called KK parity. This symmetry implies that in any allowed interaction the sum
of the KK numbers of the fields making up the corresponding operator must be even. As a
result, any interaction with only fields from the SM (n = 0) and the first KK level (n = 1)
must involve an odd number of n = 1 states. The physical implication of this is that odd
KK modes must be created in pairs, and that the lightest n = 1 KK particle (LKP) is stable.
This makes the LKP a potential candidate for DM [7].

In the minimal realization of UED, the LKP is a mixture of the vector-boson KK partners
of the hypercharge Bµ and SU(2)L W

3
µ fields. This state is electrically neutral, and has a

mass close to π/R. Calculations of the annihilation cross section of this state show that
it gives the observed relic density through thermal freeze out provided its mass is close to
mLKP = 500 GeV [7, 8]. Other masses and types are LKP can arise in extensions of the
minimal model. The dependence of the LKP relic density on its mass is shown in Fig. 2.
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Figure 3: Feynman diagram for χ0
1χ

0
1 → A0 → bb̄.

2.3 Other Possibilities

There are many other theories that predict WIMP (or WIMP-like) DM. In general, all that is
needed is a symmetry to stabilize the DM candidate and a way for that particle to annihilate
in the early Universe. The DM candidate may even be unstable, provided its lifetime is very
long compared to the age of the Universe.

3 Special Cases for DM Annihilation

As mentioned above, a mostly-Bino LSP in supersymmetry tends to produce too much DM
by thermal freeze-out. However, such a state can produce the correct amount of DM in
certain special cases. We will describe two of the most popular examples here: resonant
enhancement, and coannihilation [9]. While we focus on supersymmetry in this section,
these mechanisms apply just as well to other DM candidates.

3.1 Resonant Enhancement

Consider the annihilation channel χ0
1χ

0
1 → A0 → bb̄ by way of an intermediate s-channel

pseudoscalar A0 (that arises in the supersymmetric SM). We show the corresponding Feyn-
man diagram in Fig. 3. The squared amplitude for the annihilation cross evidently contains
an A0 propagator, and it goes like

M ∝
∣∣∣∣

1

s−m2
A + imAΓA

∣∣∣∣
2

(11)

where s = (pχ1
+ pχ2

)2 ≃ 4m2
χ and ΓA = τ−1

A is the decay width of the A0 particle. Since
ΓA ≪ mA in most cases, the annihilation cross section will be strongly enhanced for mχ ≃
mA/2 corresponding to the intermediate A0 being nearly on-shell. This can give a very large
enhancement relative to the crude estimate of Eq. (1). When the resonance is very narrow,
it is also important to integrate the Boltzmann equation numerically rather than to use the
approximate method presented in notes-2 [9].
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3.2 Coannihilation

A second important special case is coannihilation. In writing the Boltzmann equation for
the freeze out of χ in notes-2, we implicitly assumed that the only relevant particles were χ
and those of the SM. In SUSY (and other scenarios), there may be other new particles that
can also play an important role in determining the relic density. For example, χ0

1 particles
can be created through the decay q̃ → qχ0

1 (where q̃ is a squark), and they can annihilate
via q̃χ0

1 → q g. Coannihilation refers to all these additional reactions that we have not yet
considered.

In many situations the coannihilation reactions are not important and can be neglected.
For example, suppose the squark q̃ is much heavier than the χ0

1 LSP. In this case the squarks
will freeze out on their own and decay down to χ0

1 well before χ0
1 freezes out. Since χ0

1

remains close to thermodynamic equilibrium before its own freeze out, the extra χ0
1 particles

produced by these decays will annihilate away as this state tracks its equilibrium value.

Coannihilation can be very important when the LSP is close in mass to one or more of
the other superpartners [9]. (A good rule of thumb is that it can be important when the
masses are within 25% or so). In this case it is no longer a good approximation to treat
the freeze-out of χ0

1 alone. Instead, the correct way to handle the other superpartners is
to compute the total relic density of all the superpartners, n =

∑
i ni, by combining the

Boltzmann equations for all of them. Since each relic superpartner will either annihilate
to the SM or eventually decay to the LSP, n → nSLP at late times. The corresponding
Boltzmann equation for n is [10]

dn

dt
+ 3Hn =

∑

ij

〈σijvij〉
(
ninj − nieqnjeq

)
, (12)

where the sum runs over all superpartners and σij runs over all reactions of the form (i+j →
SM). The thermal average is a simple generalization of what we had before:

〈σijvij〉 =
1

nieqnjeq

∫
d3pi
(2π)2

d3pj
(2π)2

gigjfieqfjeqσijvij , (13)

and vij =
√
(pi · pj)2 −m2

im
2
j .

The LSP relic density can be increased or decreased by coannihilation. As a specific
example, suppose the annihilation cross section of χ0

1 with itself (〈σ11v11〉) is very small
compared to the cross section for χ0

1 + q̃ → SM (〈σ12v12〉). In this case, as the χ0
1 are in the

process of freezing out, the scattering process χ0
1 + q → g + q̃ can transfer some of the χ0

1

density to a squark density. The squark produced in this way can now annihilate efficiently
with the remaining neutralinos, and the net effect is to deplete the neutralino density more
efficiently than self-annihilation alone. Note that for this mechanism to have a significant
effect, the transfer reaction (χ0

1+q → g+ q̃) must be efficient near the time of freeze out, and
this requires that the mass of q̃ not be too much bigger than χ0

1 so that thermal collisions in
the plasma have enough energy to excite it.
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Although we have illustrated coannihilation in the context of SUSY, it can also play an
important role in other theories containing DM. A specific example is minimal UED, where
many of the KK partners are very close in mass to the LKP. The leads to a large reduction
of the final LKP density from coannihilation [8].

4 Variations on WIMPs

There are some simple variations on the WIMP picture for the formation of the DM density,
and we present a couple of them here.

4.1 The WIMPless Miracle

The cross section in Eq. (1) goes like (g2χ/mχ)
2. This gives about the right relic density

for a WIMP, with mχ ∼ mW ∼ 100 GeV and gχ ∼ gweak ≃ 0.65. However, we could also
get about the right DM density from a particle that is much lighter but with much smaller
couplings to the SM, such that the ratio (g2χ/mχ) ∼ (1/100 GeV) is about the same as for a
WIMP.

This generalization is sometimes called the WIMPless miracle [11]. It can occur, for
example, if DM couples to a new force that mediates its annihilation. For couplings weaker
than weak (gχ ≪ gweak), DM particles with masses much lighter than the weak scale can
give the correct relic density through thermal freeze out provided (g2χ/mχ) ∼ (1/100 GeV)
still holds true. Interestingly, this relationship between the dimensionless coupling and
the particle mass occurs automatically in supersymmetric theories where the breaking of
supersymmetry is communicated to the DM particle through the new gauge interaction. 2

4.2 SuperWIMPs

A second variation on the basic WIMP scenario are superWIMPs [12]. Suppose there exists
a metastable WIMP ψ that undergoes thermal freeze out in the usual way, but later decays
to a lighter stable particle χ and a SM particle, ψ → χ + f . If the χ particles have already
frozen out when this occurs, these decays will provide an additional contribution to their
relic density.

The net density of χ particles in this case will be

Ωχh
2 = Ω(th)

χ h2 +

(
mχ

mψ

)
Ωψh

2 , (14)

where Ω
(th)
χ h2 is the χ density produced by thermal processes (like its own freeze out), and

Ωψh
2 is the relice density of ψ that would occur if this state did not decay.

2Mechanisms of communicating supersymmetry breaking will be discussed in the next set of notes.
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