Cross-sections

1 Two Interaction Lagrangians

a) Consider the following interaction lagrangian between dark matter fermion χ, a scalar field ϕ and some other fermion f

$$
\mathcal{L} \supset \lambda \phi \bar{f} \chi+\text { h.c.. }
$$

Assuming that $m_{f}=0$ compute the averaged and spin-summed (amplitude) ${ }^{2}$ for the following diagram in the limit $m_{\phi}^{2} \gg m_{\chi}^{2}$:

b) Next consider the following dimension six interaction Lagrangian (such a Lagrangian arises when a massive intermediate vector boson is integrated out, for example):

$$
\mathcal{L} \supset \frac{1}{\Lambda^{2}} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{f} \gamma_{\mu} f .
$$

Again, assuming that $m_{f}=0$ compute the (amplitude) ${ }^{2}$ for the above diagram.

Useful Formulae:

Apart from the Feynman rules you may find the following identities useful:
-

$$
\begin{aligned}
& \sum_{s} u_{s}(p) \bar{u}_{s}(p)=\not p+m \\
& \sum_{s} v_{s}(p) \bar{v}_{s}(p)=\not p-m
\end{aligned}
$$

-

$$
\begin{aligned}
\operatorname{Tr} \gamma^{\mu} \gamma^{\nu} & =4 \eta^{\mu \nu} \\
\operatorname{Tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} & =4\left(\eta^{\mu \nu} \eta^{\lambda \rho}+\eta^{\mu \rho} \eta^{\nu \lambda}-\eta^{\mu \lambda} \eta^{\nu \rho}\right) \\
\operatorname{Tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} & =0
\end{aligned}
$$

