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The existence of a new stable, neutral, massive particle is not enough to explain the
observed dark matter. There must also be a mechanism by which the right density of this
particle was created in the early Universe. The DM creation mechanism that has received
the most attention is thermal freeze out, and we will describe it in detail here.

The assumption underlying thermal freeze-out is that the DM particle, (which we will
refer to as χ) was once in thermodynamic equilibrium with the hot plasma of SM particles
created after inflation. During this period, the Universe was radiation-dominated with a
temperature so large that the DM particle was also highly relativistic. As the Universe
cooled below the mass of χ, the annihilation reactions χχ ↔ SM SM could no longer keep
up with the expansion of the Universe and effectively turned off, leaving a relic density of
χ particles much larger than their equilibrium value. In this case, the χ particle is said to
have frozen out of the thermal bath, and the leftover density makes up the DM.

1 Equilibrium and Departures from It

The most useful way to describe the properties of the hot soup of particles present in the
early Universe is statistical mechanics. Everything we could hope to know about the average
properties of the i-th particle species is contained in the distribution function fi(t, ~x, ~p). For
example, the local number density, energy density, and pressure are

ni(t, ~x) =

∫

d3p

(2π)3
gi fi(t, ~x, ~p) (1)

ρi(t, ~x) =

∫

d3p

(2π)3
giEi(~p) fi(t, ~x, ~p) (2)

pi(t, ~x) =

∫

d3p

(2π)3
gi

~p2

3Ei(~p)
fi(t, ~x, ~p) (3)

(4)

where gi is the number of internal degrees of freedom; spins, colours, and such).

You have already encountered distribution functions in thermodynamics. For a (Grand
Canonical Ensemble) system in thermodynamic equilibrium, we have

fieq(t, ~x, ~p) = fieq(E) =
[

e(E−µ)/T ∓ 1
]−1

, (5)

where T is the temperature, µ is the chemical potential, and the minus (plus) sign corresponds
to bosons (fermions).

In the early Universe, we are interested in the distributions of elementary particles, which
we can usually treat as an unpolarized, weakly-interacting gas. Thus, the state of any single
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particle is characterized by its 3-momentum ~p, with E =
√

m2
i + ~p2. We also know that

the early Universe is highly isotropic and homogeneous, which means that we must have
fi(t, ~x, ~p) = fi(t, E).1

Since the Universe is expanding in time, it cannot be in thermodynamic equilibrium in
the usual time-independent sense. However, in many cases the time scale of the expansion is
very slow compared to the interaction rates of particles in the plasma, and the expansion can
be accommodated as an adiabatic change in the temperature (and chemical potentials) of the
plasma. As a result, we say that a species in the cosmological plasma is in thermodynamic
equilibrium if its distribution function is given by Eq. 5 with only T and µ varying slowly in
time. Applying this to the particle species i (and setting chemical potentials to zero which
is usually a good approximation), we find the equilibrium number densities

nieq =

{

{

1
3/4

}

gi
ζ(3)
π2 T

3; T ≫ mi

gi
(

miT
2π

)3/2
e−mi/T T ≪ mi

, (6)

where the 1 (3/4) is for bosons (fermions) and ζ(3) ≃ 1.202. At high temperature, we see
that ni ∼ T 3, while at low temperatures we have ni ∝ e−mi/T corresponding to the usual
Boltzmann suppression of states with E ≃ mi ≫ T .

When discussing thermal freeze out of dark matter, we will be interested in computing
the departure of the DM distribution function from thermodynamic equilibrium. There will
be two aspects to this. Full thermodynamic equilibrium implies both chemical equilibrium

and kinetic equilibrium. Chemical equilibrium means that the number density of the species
matches the equilibrium value. Kinetic equilibrium means that the distribution has the same
energy dependence as the equilibrium value, or equivalently

fi(t, E) = ξi(t)fieq(E) , (7)

where ξ(t) is some function of time alone (but not energy), and the equilibrium distribution
depends on time only through the time variation of T and µ. For thermal freeze out of DM,
we will see that chemical equilibrium is lost before kinetic equilibrium.

Departure from thermodynamic equilibrium in the distribution fi is described by a
Boltzmann equation of the form

L[fi] = C[fi; {fj}] . (8)

The left side is called the Liouville term and the right side is called the collision term. For
a non-relativistic system, the Liouville term is given by

(

∂

∂t
+

dxk

dt

∂

∂xk
+

dpk
dt

∂

∂pk

)

fi . (9)

We see that it is just a total time derivative. The relativistic generalization is

L[fi] =

(

pα
∂

∂xα
− Γα

βγp
βpγ

∂

∂pα

)

fi , (10)

1As discussed before, the tiny spatial variations in the density are very important for structure formation,

but they won’t play a relevant role in DM freeze out so we will ignore them here.
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where Γα
βγ is the Christoffel symbol for the background spacetime. Unlike the Liouville term,

the collision term C[fi; {fj}] is process-dependent and depends on the distributions of other
particles present in the plasma. It describes scattering and decay processes that modify the
distribution fi.

Starting from the Boltzmann equation, we can integrate both sides over d3pχ to get
an equation for the time variation of the density nχ of the particle species χ in the early
Universe. The result is:

dnχ

dt
+ 3Hnχ = C̃[fχ; {fj}] . (11)

The 3Hnχ term on the left describes the dilution of the χ density by the expansion of
spacetime; if C̃ = 0 we would have nχ ∝ a−3, where a(t) is the expansion factor. The
collision term on the right has a contribution from every process in the plasma that changes
the number of χ particles. For the process χ+ a+ . . .+ b ↔ i+ . . .+ j, the contribution to
the collision term is given by

∆C̃ = −
∫

(dΠχdΠa . . . dΠb)(dΠi . . . dΠj)(2π)
4δ(4)(pχ + pa + . . .+ pb − pi + . . .+ pj)

× 1

S

[

|Mχ+...+b→i+...+j|2fχfa . . . fb(1± fi) . . . (1± fj) (12)

− |Mi+...+j→χ+...+b|2fi . . . fj(1± fχ) . . . (1± fb)
]

.

Here dΠi = gi d
3pi/(2π)

32Ei is the Lorentz-invariant phase space measure, and |MI→F |2 is
the squared matrix element for the reaction I → F averaged over all initial and final degrees
of freedom. We also see that the forward reaction χ + . . . + b → i + . . . + j is weighted by
the phase space distributions of all the particles in the initial state and factors of (1 ± fi)
for each particle in the final state. The sign here is positive if i is a boson and negative if
it is a fermion. These factors account for Pauli blocking (reduced final-state phase space
for fermions due to Pauli exclusion) or stimulated emission (enhanced phase space by Bose
condensation). The symmetry factor S accounts for identical particles, and picks up a factor
of n! for every identical species in the initial or final state.

The collision term of Eq. (12) is very complicated, but it can be simplified greatly by
making a few reasonable approximations. In most cases of interest we have fi ≪ 1, meaning
that (1± fi) ≃ 1. It is also usually the case that the effects of CP violation are numerically
small. If so, we have |Mχ+...+b→i+...+j|2 ≃ |Mi+...+j→χ+...+b|2 := |M|2. Plugging this back
into Eq. (12), we get

∆C̃ = −
∫

(dΠχdΠa . . . dΠb)(dΠi . . . dΠj)(2π)
4δ(4)(pχ + pa + . . .+ pb − pi + . . .+ pj)

× 1

S
|M|2(fχ . . . fb − fi . . . fj) . (13)

This is starting to look like the total cross sections for the forward and reverse reactions,
integrated over the initial-state phase spaces weighted by the initial-state distribution func-
tions.
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2 Thermal Freeze Out of Dark Matter

We now have all the tools we need to study the thermal freeze out of dark matter. To be
concrete, we will assume that the DM particle χ is a Majorana fermion (so that χ̄ = χ) and
that the only relevant χ-number-changing reaction is χχ ↔ f f̄ for some SM fermion f . The
relevant collision term is therefore

∆C̃ = −
∫

(dΠχ1
dΠχ2

)(dΠfdΠf̄)(2π)
4δ(4)(. . .) |M|2

(

1

2
× 2

)

(fχ1
fχ2

− ffff̄ ) . (14)

The factor of (2× 1/2) = 1 accounts for the fact that the number of χ changes by two units
in this reaction, but is cancelled by the symmetry factor for the two identical particles in
the initial state.

We are specifically interested in the behaviour of the collision term when mf ≪ T . mχ.
In this case, we can reliably approximate the equilibrium distributions of f and χ by simple
Boltzmann factors (1/(e−m/T ∓ 1) ≃ e−m/T ), and we can assume that the SM fermions f
and f̄ are in thermodynamic equilibrium. Together with energy conservation in the reaction,
this gives

ffff̄ = e−(Ef+Ef̄ )/T = e−(E1+E2)/T = f1eqf2eq , (15)

where f1eq and f2eq are the (Boltzmann) distribution functions that χ1 and χ2 would have if
they were in thermodynamic equilibrium. Applying this to Eq. (14), we get

∆C̃ = −
∫

(dΠχ1
dΠχ2

) (fχ1
fχ2

− f1eqf2eq )

[
∫

(dΠfdΠf̄)(2π)
4δ(4)(. . .)|M|2

]

= −
∫

(dΠχ1
dΠχ2

) (fχ1
fχ2

− f1eqf2eq ) (σv) (2E12E2) (16)

= −
∫

d3p1
(2π)3

d3p2
(2π)3

g2χ (fχ1
fχ2

− f1eqf2eq) (σv) .

In this expression, we have made us of the standard definition of the cross section [2].

We can simplify this last expression even further by making the assumption that the DM
particles will remain in kinetic equilibrium throughout the freeze-out process. Using Eq. (7)
we get

∆C̃ = −(n2
χ − n2

χeq
)〈σv〉 , (17)

where the thermal average of an operator O(p1, p2) is defined to be

〈O〉 = 1

n2
eq

∫

d3p1
(2π)3

d3p1
(2π)3

g1g2 f1eqf2eq O(p1, p2) . (18)

Note that it is defined with respect to the equilibrium distributions.

Putting everything together, the final form of the Boltzmann equation for the cosmolog-
ical evolution of the χ density is

dnχ

dt
+ 3Hnχ = −〈σv〉(n2

χ − n2
χeq

) . (19)
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Freeze Out

Figure 1: Evolution of nχa
3 during thermal freeze out.

Before trying to solve this equation, it’s worth thinking a little about how we expect the
solutions to look when the cross section is reasonably large. At high temperatures T ≫ mχ,
nχeq

∼ T 3 will be relatively large and the collision term on the right will be much larger
than the Hubble term. In this case, the number density of χ will be driven to its equilibrium
value; nχ ≃ nχeq

. On the other hand, as the temperature cools below the mass, T . mχ, the
equilibrium density of χ becomes exponentially suppressed and the collision term becomes
less important. The number density will initially track the equilibrium value until the Hubble
term in Eq. (19) becomes larger, at which point the annihilation process effectively turns
off. Physically, the number density of χs have become so small that the mean time between
collisions exceeds the Hubble time (tH = H−1). The turn-off of the DM annihilation reaction
with the falling temperature is the reason for the term “freeze out”. After this point, the
number density of χ just dilutes with the expansion of the Universe, nχ ∝ a−3, and remains
much larger than the equilibrium value. We illustrate the evolution of nχ in Fig. 1.

We turn now to solving the Boltzmann equation for nχ to determine the contribution of
χ to the dark matter density today. As a practical matter, there are three things we need
to do:

1. Compute (σv)4E1E2 =
∫

(dΠfdΠf̄)(2π)
4δ(4)(. . .)|M|2. This quantity is Lorentz-invariant,

and can therefore always be written as a function of s = (p1 + p2)
2.

2. Integrate the result over the incoming momenta p1 and p2 weighted by the equilibrium
distributions to get 〈σv〉. The result can be written as a function of x = m/T .

3. Put this into Eq. (19) and solve for the density today nχ(t0).

The first two steps present a slight complication. We usually compute the cross section in
a fixed frame (CM or lab in most cases), but our distribution functions are defined relative to
the rest frame of the cosmological plasma which usually coincides with neither. The proper
way to handle this is to make use of the Lorentz invariance of (σv)4E1E2 and to re-express
the integrals for the thermal average in terms of an integral over s and some other stuff
that this quantity does not depend on. The full details can be found in Ref. [3], and the
result is staightforward to implement numerically. Instead, we will provide here an analytic
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prescription that works pretty well when freeze out occurs with χ very non-relativistic (which
is frequently the case). The prescription is:

• Compute σv in the CM frame with initial momenta p1 = (mχ(1+u2/2), 0, 0, mχu) and
p2 = (mχ(1 + u2/2), 0, 0,−mχu).

• Expand the result in powers of u2: σv = σ0 + σ1u
2 + . . ..

• The effect of thermal averaging is to replace u2 → 3/2x, where x = mχ/T : 〈σv〉 =
σ0 + σ1(3/2x) + . . . = σ0 + σ̃1/x+ . . ..

The result will be correct to O(1/x).

The third step in finding nχ(t0) is more straightforward, since all we have to do is solve
a differential equation. For this, it helps to exchange t for x = mχ/T and nχ for the yield

Yχ :=
nχ

s
, (20)

where s is the entropy density of the thermal plasma, given by

s =
2π2

45
g∗s T

3 . (21)

Here, g∗s is approximately the number of relativistic degrees of freedom in the cosmological
plasma. This quantity is extremely useful because the expansion of the Universe conserves
the combination sa3 (as long as there are no entropy injections). To exchange t for x as the
dependent variable, we use the Hubble equation for radiation domination

H2 =

(

ȧ

a

)2

=

(

1

2t

)2

= g∗
π2

90

1

M2
Pl

T 4 := H2(T ) , (22)

with g∗ the number of relativistic degrees of freedom and MPl ≃ 2.4×1018 GeV is the Planck
mass.2 Putting everything together, the rewriting of Eq. (19) in terms of Yχ and x is

dYχ

dx
= − xs

H(mχ)
〈σv〉(Y 2

χ − Y 2
χeq

) , (23)

where H(m) is the value of the Hubble constant at T = m (x = 1) and

s = g∗s
2π2

45
m3

χ x
−3, Yχeq

=
45

2π4

(π

8

)1/2 gχ
g∗s

x3/2e−x (x ≫ 1) . (24)

Everything on both sides of Eq. (23) is now written as a function of x alone.

We are now ready to solve for Yχ(t0), the yield of χ at the present time. It is straight-
forward to solve for Yχ numerically, and this is what is done in practice. However, we will
derive an approximate solution for Yχ to get a better intuitive understanding of how freeze
out works. The assumption that goes into this approximation is that freeze out occurs when

2Note that my Planck mass is the reduced value M̃Pl = 1/
√
8πG. The non-reduced value M̃Pl = 1/

√
G ≃

1.2× 1019 GeV is also frequently used.

6



x = xf ≫ 1, with χ being highly non-relativistic. Our strategy will be to estimate xf and
then solve for Yχ in the x ≫ xf [1].

We begin by estimating xf , corresponding to the point at which the annihilation process
χχ → f f̄ effectively turns off. We will define xf to be the point where

H = 〈σv〉nχeq
κ , (25)

where κ is a constant of order unity. For 〈σv〉 ≃ σnx
−n, we find

xf ≃ ln

[

κ

√

90

8π3
(gχ/g

1/2
∗

)mχMPlσn

]

− (n+ 1) ln

(

ln

[

κ

√

90

8π3
(gχ/g

1/2
∗

)mχMPlσn

])

. (26)

Note that xf depends only logarithmically on the unspecified constant κ as well as everything
else, implying that the sensitivity to the details is pretty weak. A good agreement with the
numerical solution is found for κ = (n + 1) [1].

Next, we look for an approximate solution in the region x ≫ xf . Since this comes after
freeze out, we expect to have Yχ ≫ Yχeq

. Dropping Yχeq
terms, Eq. (23) becomes

d∆

dx
= −λσnx

−n−2∆2 , (27)

where λ is independent of x. This is trivial to solve by integrating between xf and x0 ≃ ∞
to give

Yχ(t0) ≃
(n+ 1) xn+1

f

λσn
. (28)

Integrating all the way to xf is a bit of cheat because our approximation starts to break
down there, but this cheat is found to still do pretty well compared to the full numerical
solution (within 10% or so).

To convert this solution to the relic density Ωχh
2, we need to multiply Yχ(t0) by mχs0/ρc.

Measurements give s0 ≃ 3000 cm−3 and ρc ≃ (1.05 h2)× 104 eV cm−3. The final result is

Ωχh
2 ≃ (0.23× 109 GeV−1)

(n+ 1) xf

MPl (g∗s/g
1/2
∗ ) 〈σv〉

, (29)

where everything in the denominator is evaluated at x = xf . An important feature of this
result is that it depends only very weakly on the mass of the DM particle, logarithmically
through xf (and possibly more directly in 〈σv〉). The final relic density is also inversely
proportional to the annihilation cross section. This isn’t surprising - the larger the cross
section, the longer the particle density tracks the steeply-falling equlibrium density.
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