
PSI Dark Matter Homework #2
Due: Apr. 20, 2012

1. Dark matter freeze out, from start to finish.

a) Starting from the interactions

−L ⊃ gχχ̄χ φ+ gf f̄ f φ (1)

compute the leading contribution to 〈σv〉 for χχ̄ → f f̄ using the non-relativistic
prescription described in Note #2. You may treat f as massless but keep the
masses of φ and χ. You should also account for the fact that φ is unstable by
including its decay width Γφ in the propagator: i/(q2 −m2

φ + imφΓφ).
Hint: you should have computed the matrix element already in the tutorial session.

b) Compute xf and Ωχh
2 using the approximate expressions in Note #2.

c) Plot your results as a function of the χ mass over the range 10 GeV < mχ <
1000 GeV for gχ = gf = 0.2 and mφ = 300 GeV. Take the width of φ to be
Γφ = mφ/50.

You should now be equipped to compute the DM relic density of your favourite theory!

2. Non-thermal DM.

a) Suppose we have a very heavy particle P with mass mP , decay width ΓP =
κ (m3

P/M
2

Pl
), and no relevant annihilation channels. Since this decay width is

very small, its lifetime (τP = 1/ΓP ) will be very long. Assume that the the
density of P particles is nP = ξ T 3 (with ξ ≪ 1) when the temperature of the
universe is T = mP , and at this time the Universe is dominated by radiation.
When does the energy density in non-relativistic P particles become equal to the
radiation density? What radiation temperature does this correspond to? What
is the energy density ρP at this time?

b) After this time, which we’ll call tP (such that ρP (tP ) = mPnP = ρR(tP )), the
density of P particles will be the dominant source of energy in the Universe. The
remaining radiation will redshift away due to the expansion induced by P . At
the same time, let us assume that P also decays to radiation and to dark matter
with relative partial decay widths ǫΓP and (1 − ǫ)ΓP for some ǫ ≪ 1. This will
inject more radiation and some dark matter into the Universe. These processes
are described by the differential equations

dρP
dt

+ 3HρP = −ΓPρp (2)

dρR
dt

+ 4HρR = +(1− ǫ)ΓPρP (3)

dnχ

dt
+ 3Hnχ = +ǫΓP (ρP/mP )− 〈σv〉 (n2

χ − n2

χeq
) (4)

H =

(

ȧ

a

)

=

√

8πG

3
(ρP + ρR + ρχ)

1/2 (5)
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These equations are complicated, but we can solve them analytically by making
a few simple approximations. First solve for (ρPa

3), starting with the density at
t = tP . You should find something proportional to exp[−ΓP (t− tP )]

c) We are interested in the case tP ≪ τ−1

P . For t ≪ τP = ΓP , we can approximate the
exponential in the solution above by unity: exp[...] = 1. With this approximation,
solve for the time dependence of the scale factor a(t) in terms of aP = a(t = tP )
and tP in the regime tP ≤ t ≪ τP . You may also assume that ρtotal = ρP during
this time.

d) Solve also for the energy density in radiation under the same approximations.
Figure out which term in your answer is the dominant one for t → τP . What does
it correspond to, physically?

e) Solve for the DM density as well, assuming that the annihilation term in the
equation is completely negligible. Again, figure out which term in your answer is
the dominant one for t → τP and explain what it corresponds to.

f) Extrapolate your solutions forward in time (under the same approximations), and
estimate the time tRH when ρR = ρP again. How does this compare to τP , and
what does this say about the approximations made above?
Hint: we are mainly interested in parametric dependences, so don’t worry too

much about factor of order unity.

g) This point is called reheating, and the corresponding temperature is called TRH .
What is this temperature in terms of ΓP ?
Hint: lots of stuff cancels out!

h) For t > tRH the Universe reverts to radiation domination. Suppose TRH ≪ Tfo,
the freeze-out temperature for χ. In this case, χ does not annihilate significantly
after reheating so its number density just dilutes from redshifting once it stops
being produced by P decays. Estimate the reheating temperature TRH and the
relic density Ωχh

2 today in terms of ǫ for mP = 105 GeV, mχ = 100 GeV, and
κ = 10−2. How does TRH compare to what you would expect for the thermal
freeze-out temperature for χ (assuming that it is a WIMP)?

i) A quick approximation to the results above can be obtained by treating P as
simply redshifting while it is dominant, and decaying instantaneously to radiation
and DM at t = τP . Using energy conservation and the fact that each P decay
produces an average of ǫ DM particles, find the reheating temperature and DM
density in this approximation and compare to your previous results.

The calculations you’ve done here are almost identical to those you would do for
reheating after inflation. In that case, P would correspond to the inflaton field. The
main differences are that this intial radiation and DM densities would be nearly zero,
and the energy of the P field would come from its oscillation energy (which happens
to redshift like matter) rather than its mass.
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3. Spin-dependent cross sections.
(Borrowed from notes by P. Salati: http://inspirehep.net/record/776274 )

a) The matrix element for χ-nucleus scattering from the spin-dependent AA DM-
quark interaction is

M = 2
√
2GFΛN 〈χ(p3, s3)| χ̄γµγ5χ |χ(p1, s1)〉 〈N(p4; J,mf)|Sµ |N(p2; J,mi)〉 . (6)

Sum this over final states and average it over initial states, treating the nucleus
as a non-relativistic system with total spin J (and magnetic states m = −J,−J +
1, . . . , J), to show that:

“|M|2′′ = 8G2

FΛ
2

N

1

2(2J + 1)
χµνNµν , (7)

where

χµν = tr
[

(/p3 +mχ)γ
µγ5(/p1 +mχ)γ

νγ5
]

(8)

and

Nµν =
∑

mi,mf

〈J,mf |Sµ |J,mi〉 〈J,mi|Sν |J,mf 〉 . (9)

b) Work out the trace for χ in the usual way, and simplify it in the lab frame in the
extreme non-relativistic limit v → 0 (so that v → 0 and p1 = p3 = (mχ,~0). You
can also drop any terms that will give zero when you contract with the symmetric
tensor Nµν .
Hint: what could the simplified χµν possibly depend on?

c) Simplify and evaluate Nµν . For this, use the fact that Sµ ≃ (0, ~J) in the non-

relativistic limit, where ~J is the familiar spin operator.

d) Put everything together to show that “|M|2′′ ∝ G2

FΛ
2

N J(J + 1).
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