PSI Dark Matter Homework #1

Due: Apr. 12, 2012

- 1. Dark Matter Profiles:
 - a) Make plots (using a plotting program of your choice) of the NFW, Iso-Core, and Einasto ($\alpha = 1.7$) galactic DM profiles using the functional forms listed in the notes. Put them on the same set of axes.
 - b) We will see that the cosmic ray signal strength from given point in the sky from DM annihilation in our galaxy is proportional to $\langle \sigma v \rangle n_{\chi}^2$, where n_{χ} is the local DM number density. Assuming a constant cross section, make plots of the contributions to the signal strengths (as a function of the distance from the galactic center) for the NFW and Einasto profiles relative to the Iso profile.
- 2. Boltzmannology:
 - a) The collision term for the Boltzmann equation for n_{χ} we derived in class for the $\chi \chi \to f \bar{f}$ process was

$$-\int \frac{d^3 p_1}{(2\pi)^3} \frac{d^3 p_2}{(2\pi)^3} g_{\chi}^2 \sigma v \left(f_1 f_2 - f_{1_{eq}} f_{2_{eq}}\right) , \qquad (1)$$

where "1" and "2" refer to the two χ particles. Assuming $f(E,t) = \xi(t) f_{eq}(E)$, re-express this quantity in terms of n_{χ} , $n_{\chi_{eq}}$, and $\langle \sigma v \rangle$.

- b) Do the integral over p^0 in $\int d^4p \,\delta(p^2 m^2)\theta(p^0)$. What does this imply for how the change in $(d\Pi) = d^3p/(2\pi)^3 2E$ under Lorentz transformations?
- c) Derive for yourself the rewriting of the Liouville term $(dn_{\chi}/dt + 3Hn_{\chi})$ in terms of $Y_{\chi} = n_{\chi}/s$ as a function of x = m/T.
- 3. Cross Sections
 - a) Consider the interaction

$$-\mathscr{L} \supset \frac{1}{\Lambda^2} \,\bar{\chi} \gamma^\mu \gamma^5 \chi \,\bar{f} \gamma_\mu f \,\,. \tag{2}$$

This could arise from integrating out a heavy vector boson that couples to both DM and the fermion f (which would give $\Lambda^2 = m_V^2/g_V^2$). Compute the squared matrix element for this process, summed over final spins and averaged over initial spins. You may assume the fermion f is massless, but keep the mass of χ around. Write your answer in terms of dot products involving the two incoming momenta p_1 and p_2 , and the outgoing momenta p_3 and p_4 .

- b) Evaluate this summed and squared matrix element in the center-of-mass frame.
- c) Turn this matrix element into σv by integrating it over the final-state phase space $(\int d\Pi_3 d\Pi_4(2\pi)^4 \delta^{(4)}(...))$ and multiplying by the appropriate factors. You should be able to write everything in terms of the Mandelstam variable $s = (p_1 + p_2)^2$ and the mass of χ .

- d) Expand s to quadratic order in v = p/E in the non-relativistic limit $v \ll 1$ (working in the CM frame). Plug this into your expression for σv . You should find that $\sigma v \propto v^2$. Compute the thermal average $\langle \sigma v \rangle$ following the non-relativistic prescription described in class.
- e) What would you get if you replaced $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi$ by $\bar{\chi}\gamma^{\mu}\chi$ in the interaction? Hint: aside from tracking signs in a few Dirac traces, you basically shouldn't have to do any more work.