
PSI BSM Homework #1

1. Generating Scalar Interactions

Consider the theory

L =
1

2
(∂φ)2 + ψiγµ∂µψ −Mψψ − yφψψ .

a) Compute the divergent part of ∆Γ(φ3) at one-loop using a cutoff regular in Eu-
clidean space. Don’t worry about factors of two or π, but make sure you get the
full dependence on the couplings of the theory.

b) Compute the divergent part of ∆Γ(φ4) at one-loop using a cutoff regular in Eu-
clidean space. Don’t worry about factors of two or π, but make sure you get the
full dependence on the couplings of the theory.

c) Show that these results are consistent with the “pretend symmetry” of the theory
discussed in class.

2. The O’Raifeartaigh Model

Consider a supersymmetric theory of three chiral superfields Φ1, Φ2, and Φ3 with the
superpotential

W = −tΦ1 +mΦ2Φ3 +
λ

2
Φ1Φ

2
3 .

Take the components of these to be Φi = (φi, ψi, Fi), with i = 1, 2, 3, and assume that
all couplings are real and positive and that m2 > λ t.

a) Work out the scalar potential and the fermion mass and Yukawa couplings. Show
the result both before and after integrating out the Fi terms.
Hint: the generalization to multiple superfields is

Lint = −
1

2

∑

i,j

∂2W

∂Φi∂Φj

∣

∣

∣

∣

φ

ψiψj +
∑

i

Fi

∂W

∂Φi

∣

∣

∣

∣

φ

+ (h.c.)

b) Show that it is not possible to have all Fi = 0 simultaneously and that the vacuum
energy must be positive. This implies that supersymmetry is spontaneously
broken.

c) Demonstrate that turning on non-zero VEVs for φ1 and φ2 can only increase the
potential energy. Find the minimum of the scalar potential for φ1 = φ2 = 0.
Hint: before minimizing, show that the minimum will occur with the VEV of φ3

real. Because of this, it sufficient to treat φ3 as a real variable when minimizing.

d) Expand around this minimum and find the masses of all the physical states.
Hint: expand φ3 in real and imaginary components and find the mass for each.
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e) Show that the supertrace vanishes in this theory even though supersymmetry is
spontaneously broken. It is defined by

Str(M2) :=
∑

b

gbm
2
b −

∑

f

gfm
2
f = 0 ,

where the sums run over all the bosons (b) and fermions (f) in the theory, gi is
the number of real degrees of freedom of state i.
Hint: a Weyl fermion (plus antiparticle) have gf = 2, a Dirac fermion has gf = 4,
a massless gauge boson has gb = 2, a massive gauge boson has gb = 3, a complex
scalar has gb = 2, and a real scalar has gb = 1.

f) Relative to this minimum, show that turning on a VEV for φ1 (but not φ2) does
not change the potential energy. This means that φ1 is a flat direction of the
potential. Repeat parts d) and e) for the same minimum as above but with a
non-zero fixed value of 〈φ1〉 = v1.

Totally Optional Extra Problem: Running Couplings

Consider the λφ4 theory discussed in class, and let us pretend that the exact value of the
one-loop correction to the (1PI connected) 4-point function is

∆Γ(4)(s) = −aλ2
[

ln

(

Λ2

s

)

+ C

]

+ δλ ,

where a is a positive constant. This isn’t quite the real answer, but it is close enough for
what we want to do here.

a) Let us choose the renormalization condition for this term to be ∆Γ(4)(s0) = 0 for the
fixed reference momentum point s0. Solve for δλ given this condition and show that
∆Γ(4)(s) is now finite for any value of s (to one-loop).

b) The renormalization condition chosen above is not unique, and we could have chosen
to set the one-loop correction to zero at a different momentum point s1. In general,
let us define λ(s) to be the renormalized coupling derived from the renormalization
condition ∆Γ(4)(s) = 0. How is λ(s) related to λ(s0)? For this, it is easiest to write
λ(s) as a function of λ(s0).

c) Compute dλ/dt, where t = ln(s/s0). This defines a non-trivial differential equation for
λ(s) when the derivative is expressed in terms of λ(s). (Note that to O(λ2) you can
just replace λ(s0) with λ(s).) Solve the differential equation for λ(s) subject to the
boundary condition λ(s = s0) = λ(s0).

d) Expand your result to O(λ2(s0)) and show that it reproduces the result from b) at this
order. However, note that the expansion parameter in this case is not λ(s0) but rather
λ(s0) ln(s/s0). What happens to this expansion parameter for s≫ s0?

2



e) By defining λ(s) through the solution to the differential equation rather than directly
as in part b), we have extended the range of validity of the perturbative expansion.
Even so, perturbativity can still be lost if λ(s) grows big. Using the solution from c),
at what value of s does λ(s) go to infinity? This is called a Landau pole.

f) Suppose we had instead that a = −|a| < 0. Assuming that λ(s0) is small, what
happens to λ(s) as s→ ∞? What happens as s becomes much smaller than s0?
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