
Tutorial Ideas for # 4

1. General Goldstinos

The existence of a massless goldstino can be shown on general grounds for a theory
consisting of chiral and vector superfields. Consider such a theory with an Abelian
vector multiplet (λ,Aµ, D) and a set of n chiral superfields Φi with gauge charges qi.

a) A general U(1) transformation takes

Φi → eiqiαΦi = (1 + iqiα + . . .)Φi ,

where we have specialized to infinitesimal transformations in the second equality.
By expanding the superpotential to linear order in small α, find a necessary (and
sufficient) condition for the superpotential to be gauge-invariant.

b) Write down the full scalar potential of the theory and derive a general expression
for the minimization conditions ∂V/∂φi = 0.

c) Find the general fermion mass matrix in the basis (λ, ψi) assuming some of the
scalar fields get VEVs 〈φi〉.
Hint: consider the mixed gauge terms and the superpotential bits, and keep in
mind that in the given basis, the blocks of the matrix will have dimension 1 × 1,
1× n, n× 1, and n× n, where n is the number of chiral superfields.

d) Define a (1 + n)-dimensional column vector va by

va =

(
〈D〉/

√
2

〈Fi〉

)
,

where 〈D〉 = 〈g
∑

i qi|φi|2〉 and Fi = 〈∂W †/∂φ†
i 〉. Show that va is non-trivial

if and only if there is supersymmetry breaking. When supersymmetry breaking
is present, prove that va is a zero eigenvector of the mass matrix Mab. The
corresponding massless fermion is the goldstino.
Hint: use the results of parts a) and b).

2. Gravitino Dynamics

These can have interesting effects in colliders and cosmology.

a) Use dimensional analysis to estimate the decay rate of the gravitino to a particle-
superpartner pair via the gravitino couplings of Eq. (106).

b) Do the same for the decay X̃ → X + G̃ based on the couplings of Eq. (106)
in notes-02. Comparing to Eq. (108), you should get a parametrically wrong
answer when m3/2 ≪ mX̃ .

c) The analysis of b) is wrong because the longitudinal goldstino enhancement was
not taken into account. Repeat the estimate, but now use Eq. (107) to model the
enhancement if applicable.
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d) In gauge mediation, the gravitino is typically the LSP and the lightest MSSM
superpartner NLSP can decay to it. Assuming the NLSP is a mostly-Bino neu-
tralino with a mass of 100 GeV that decays primarily through χ0

1
→ γG̃, estimate

the values of F and M∗ such that the decay length cτ is 1mm and 10m. The
first distance corresponds to the resolution of the LHC to detect delayed decays,
and the second is the size of the LHC detector (so that cτ > 10m means that the
NLSP decay is not seen in the detector).

3. Supersymmetric Nonrenormalization

The cancellations among loops of particles and superpartners have been formalized in
a set of non-renormalization theorems. These are usually expressed in terms of an
effective Lagrangian obtained by integrating out heavy physics down to the scale µ.
When calculating with such an effective Lagrangian, only (Euclidean) momenta below
q2E ≤ µ2 are to be considered in loops. The key non-renormalization result for chiral
superfields is that the superpotential is not renormalized for a suitable choice of field
coordinates. We will illustrate this for the Wess-Zumino model based on the chiral
superfield Φ and the tree-level superpotential

W0 =
1

2
m0Φ

2 +
λ0
3!
Φ3 .

If supersymmetry is to be preserved at the quantum level, the interactions in the effec-
tive Lagrangian must be derivable from an effective superpotential. For an appropriate
choice of field basis, this superpotential Weff can depend only Φ, λ0, m0, and µ, and
does not have to be renormalizable. Our goal will be to deduce its form.

a) Show that if we treat m0 and λ0 as superfields, the tree-level superpotential has
a U(1)x symmetry under which [Φ]x = 1, [m0]x = −2, and [λ0]x = −3. Show
also that the superpotential has a U(1)R symmetry for the charges [Φ]R = 1,
[m0]R = 0, [λ]R = −1.

b) What combinations of the integers (nλ, nm, nΦ) produce monomials λnλ

0
mnm

0
ΦnΦ

that are neutral under both U(1)x and U(1)R? Show that the most general form
is (λa

0
Φbmc

0
)n for some minimal integers (a, b, c) and any n.

(λ0Φ/m0)
n for any n

c) The quantum-corrected superpotential should respect these symmetries as well.
Use this requirements and your previous result to show that the most general
effective superpotential is

Weff = m0Φ
2
∑

n∈Z

an(λ
a
0
Φbmc

0
)n

d) This effective superpotential should have smooth limits as m0 → 0 and λ0 → 0,
and reproduce the tree-level result as λ0 → 0. What does this imply for the
coefficients an?
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e) What does this imply for the renormalization of W ? Note that there will also be
a wavefunction renormalization that rescales the kinetic terms.
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