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A third approach to the electroweak hierarchy problem is to postulate that the funda-
mental Planck scale is not much larger than the electroweak scale. In these scenarios, the
strength of gravity is diluted in a way that makes it appear to be much weaker (to us) than it
really is. In particular, the true scale of quantum gravity is M∗ ≪ MPl. If M∗ ∼ 4πmW , our
quantum field theoretic description of elementary particles is unlikely to be valid at energies
above M∗, and thus there is no hierarchy problem provided M∗ is not too much larger than
the weak scale.

The known mechanisms for diluting the apparent strength of gravity typically make use
of extra spacelike dimensions of spacetime.1 Such extra dimensions appear to be an essential
component of string theories [1, 2, 3], and they have been studied in various other contexts
as well [4]. In the Large Extra Dimensions (LED) scenario, the strength of gravity we see is
reduced by a factor of the volume of the extra dimensions [5, 6, 7]. With a Warped Extra

Dimenson, gravity appears extremely weak to us because is localized away from us in the
extra dimension [8, 9]. We will discuss both of these scenarios in these notes, as well as an
intriguing connection between warped scenarios and strong coupling in four dimensions.

1 Large Extra Dimensions

Suppose we have n extra dimensions and let M∗ be the fundamental Planck scale in the
full d = (4 + n)-dimensional theory. Consider the gravitational potential Φ in the weak
(Newtonian) limit. It satisfies

~∇2Φ ∼ 1

M2+n
∗

ρ , (1)

where ρ is the local energy density. For a pair of static point masses separated by a distance
r, this leads to a gravitational force of

F (r) ∼ 1

M2+n
∗

m1m2

r2+n
. (2)

In contrast to d = 4, the gravitational flux lines can now spread out in more ways leading
to a faster decrease of the force with distance. This is clearly inconsistent with the observed
behaviour of gravity.

Let us now modify this picture by taking the n extra dimensions to all be periodic
with radius R. Thus, for every extra-dimensional coordinate w we have wa ∼ wa + 2πR,
a = 1, 2, . . . n. The gravitational force law takes the same form as before provided r ≪ R.
However, for distances large compared to the radius of the extra dimensions we have

F (r) ∼ 1

M2+n
∗

m1m2

r2(2πR)n
(r ≫ R) . (3)

1 Timelike extra dimensions lead to challenges with causality and such.
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In this case, the extent to which flux lines can spread is limited by the finite size of the extra
dimensions. Matching this expressio to the previous one, we find that

M2
Pl = (2πR)nM2+n

∗ = VnM
2+n
∗ , (4)

where Vn is the total volume of the compact extra dimensions.

Together, Eqs. (3,4) show how the strength of the gravitational force we observe can be
diluted by the volume of extra dimensions. The idea of Refs. [5, 6, 7] was to use this dilution
to recast the hierarchy problem by making R large enough that M∗ ∼ TeV.2 For n extra
dimensions of equal size, the required radius R is

2πR ≃ 1032/n10−17cm ∼















1015 cm (R−1 ∼ ...) ; n = 1
1mm (R−1 ∼ 10−13 GeV) ; n = 2
1µm (R−1 ∼ 10−8 GeV) ; n = 3
10 fm (R−1 ∼ 10−2 GeV) ; n = 6

. (5)

These radii are very large compared to typical particle physics scales. For this reason,
scenarios of this type are referred to as large extra dimensions (LED) or ADD after the
original authors [5, 6, 7]. In this section we will discuss the implications of LED models. We
will go over the new particles they predict, and we will discuss the extent to which they are
constrained by existing data and how they may be probed in the future.

1.1 Kaluza-Klein Modes

To discuss the implications of LED, we will need to study quantum fields defined in more
than four dimensions. When the extra dimensions are compact, a single d-dimensional field
can be reduced to a set of four-dimensional fields called Kaluza-Klein (KK) modes. We will
show how such KK modes arise in this subsection within a simple scalar model.

For our notation, we will write xM = (xµ, wa) for the d = 4 + n spacetime coordinates
with M = 0, 1, 2, . . . , 3+n and a = 1, . . . n. The full d-dimensional metric will be denoted by
GMN with the flat space limit being ηMN = diag(+1,−1, . . . ,−1). Note as well that when
there is only one extra dimension, it is common practice to use the indices M = 0, 1, 2, 3, 5.

Consider now a free real scalar field Φ(x, w) in d = 5 dimensions with the extra dimension
periodic with radius R, w ∼ w + 2πR. The basic action in a flat background is

S =

∫

d4x

∫ 2πR

0

dw

[

1

2
ηMN∂MΦ∂NΦ− 1

2
m2Φ2

]

. (6)

Given the geometry of the extra dimension, the field should also be periodic: Φ(x, w+2πR) =
Φ(x, w). This implies that the field can be expanded in a set of orthonormal basis functions
{fn} according to

Φ(x, w) =
∑

n

fn(w)φ
(n)(x) , (7)

2This isn’t quite a solution to the hierarchy problem unless a mechanism to fix the radii of the extra
dimensions is specified [10].
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where the coefficients φ(n)(x) depend only on the usual spacetime dimensions and

∫ 2πR

0

dw fm(w) fn(w) = δmn . (8)

The appropriate basis functions in this case are

fn(w) =
1√
2πR

einw/R , n ∈ Z . (9)

These functions are clearly periodic and orthonormal. Since Φ(x, w) is real-valued, we must

also have φ(n)†(x) = φ(−n)(x).

Plugging the expansion of Eq. (7) back into the action and using orthonormality, we get

S =

∫

d4x

(

1

2
ηµν∂µφ

(0)∂νφ
(0) − 1

2
m2φ(0)2 (10)

+

∞
∑

n=1

[

ηµν∂µφ
(n)†∂νφ

(n) − (m2 +
n2

R2
)|φ(n)|2

]

)

.

This is a four-dimensional theory containing a single real scalar φ(0) of mass m and a tower
of complex scalars φ(n) with masses mn =

√

m2 + n2/R2, n = 1, 2, . . .. The lightest state is
called a zero mode, while the n ≥ 1 fields are the KK modes.

The KK modes would be massive even in the limit ofm2 → 0, and the extra contributions
to their masses can be related to a quantized momentum in the fifth dimension. This can
be seen by noting that the expansion of Eq. (7) is just a Fourier transform of the extra
dimension for a periodic space. A further confirmation of this property can be found by
examining a non-trivial interaction:

S → Sfree −
∫

d4x

∫

dw λ5Φ
4 (11)

= Sfree −
∫

d4x
λ5

2πR

∑

k,l,m,n

φ(k)φ(l)φ(m)φ(n) δk+l+m+n, 0 .

This interaction conserves momentum in the extra dimension at the vertex. Note as well
that the theory is non-renormalizable since λ5 has mass dimension of minus one (so λ5/2πR
is dimensionless), but the theory is still predictive for E ≪ λ−1

5 . 4π/R, where the
second inequality arises from the requirement that the effective coupling of the KK modes
is perturbative.

It is straightforward to generalize the KK expansion to more compact extra dimensions.
For example, with n periodic extra dimensions of radius R, the basis functions would be

f~n(~w) =
1

(2πR)n/2
ei~n·~w/R , ~n ∈ Zn , (12)

where ~w = (w1, . . . , wn) and ~n = (n1, . . . , nn). The corresponding KK masses in this case
are m2

~n = m2 + ~n2/R2. (Sorry about all the n’s here.)
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1.2 Gravitons in LED

Let us turn next to realistic particle theories in LED. We will assume there are n periodic
extra dimensions of radius R. If we were to put the SM in the full extra dimensional space,
every SM particle would have KK modes separated in mass by 1/R. Since 1/R is very
small by particle physics standards in LED theories (for n not too large), such KK modes
would already have been observed if they existed. Instead, the SM fields are assumed to be
restricted to a four-dimensional subsurface of the full spacetime. This is found to occur in
many cases in string theory, where fields can be confined to dynamical subsurfaces called
branes [11]. The only field that propagates within the full spacetime in LED models is the
graviton, which therefore develops KK modes.

The graviton in LED emerges from expanding the metric around a background spacetime,
which we will assume to be flat,

GMN = ηMN + hMN/M
1+n/2
∗ , (13)

where the factors of M∗ ensure that hMN has the correct dimensions for a bosonic field in
d = 4 + n dimensions. The corresponding graviton action is

Sgrav =
Mn+2

∗

2

∫

d4x

∫

dnw
√

|G|R(d) , (14)

where R(d) is the d-dimensional Ricci tensor built from GMN . Expanding out the metric in
this expression produces kinetic terms for hMN as well as self-interactions. We can rewrite
the action in terms of a set of KK modes by expanding in terms of basis functions,

hMN(x, w) =
∑

~n

1

(2πR)n/2
h
(~n)
MN(x) e

i ~n·~w/R . (15)

Putting this back into Eq. (14), the integration over the extra dimensions can be performed
explicitly.

Compared to the simple scalar theory presented above, there is a new twist to the gravi-
ton [12, 13, 14]. It has multiple components related to the spacetime indices it carries, and
these components transform in different ways under the four-dimensional Lorentz subgroup
of the full spacetime coordinate invariance. Starting with hMN(x, w), it is a two-index
symmetric tensor with real entries. This would give d(d + 1)/2 degrees of freedom, but
some of these turn out to be related by the underlying invariance under general coordinate
transformations.

GMN → G′
PQ =

∂xM

∂yP
∂xN

∂yQ
GMN . (16)

For an infinitesimal coordinate transformation yM = xm + ξM , this implies that

hMN → h′
PQ = hPQ − ∂P ξQ − ∂QξP . (17)
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We can use this invariance to project out the redundant components. A popular choice is
harmonic gauge

∂MhM
N =

1

2
∂hM

M , (18)

which imposes d conditions. This gauge still allows residual transformations with ∂2ξM = 0,
and this fixes an additional d components. Together, we have a total of d(d + 1)/2 − 2d =
d(d− 3)/2 = (n+ 1)(n+ 4)/2 independent components.

The next step is to decompose the KK modes of the graviton into quantities with well-
defined transformations of the four-dimensional Lorentz subgroup. At each KK level, we
have [12, 13, 14]

h
(~n)
MN →











h
(~n)
µν

h
(~n)
µa = V

(~n)
µa

h
(~n)
ab = S

(~n)
ab

. (19)

The zero modes ~n = ~0 are massless and independent of ~w. Counting them, we have two
degrees of freedom for the massless graviton, 2n degrees of freedom for the massless vectors,
and n(n+1)/2 for the massless scalars to give (n2+5n+4)/2 in total, as expected. The KK
modes have masses m2

~n =
√

~n2/R2. At level ~n, there is one massive graviton with five degrees
of freedom, (n− 1) massive vectors with three degrees of freedom each, and n(n+ 1)/2− n
massive scalars for a total of (n2 + 4n + 5). In counting these, we have made use of the
constraints implied by general coordinate invariance which translate into the conditions

naV (~n)
µa = 0 , naS

(~n)
ab = 0 . (20)

These can also be understood in that at each KK level the massless graviton eats a massless
vector and a massless scalar to get a mass, while the remaining (n−1) massless vectors each
eat a scalar.

With these modes in hand, we would like to figure out how they couple to the SM fields.
Recall that the SM is assumed to be confined to a four-dimensional brane, and we can choose
its location to be wa = 0. The coupling to gravity is the usual minimal form, but now with
an explicit localization,

SSM =

∫

d4x

∫

dnw
√

|G|LSM δ(n)(~w −~0) (21)

=

∫

d4x
√

|g|LSM (22)

where gµν(x) = Gµν(x, w = 0) is the induced metric. Expanding this out, one obtains
couplings of the form [12, 13]

SSM ⊃ −
∫

d4x
1

M
1+n/2
∗

√
Vn

[

T µν
∑

~n

h(~n)
µν − κT µ

µ

∑

~n

S(~n) a
a

]

, (23)
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where κn is an n-dependent constant of order one and

T µν =
1
√

|g|
δSSM

δgµν
(24)

is the energy-momentum tensor of the SM. The first term reproduces the usual coupling of
the massless graviton (zero mode) to the SM once we identify Mn+2

∗ Vn = M2
Pl, as well as

couplings of the SM to the KK gravitons. The second term connects the SM to a specific
linear combination of the scalars called the radion and its KK modes. Note that none of the
other components of the graviton zero or KK modes couple to the SM. For this reason, they
can (mostly) be ignored, and the only graviton excitations that need to be considered are:

the massless h
(0)
µν and r(0) = S

(~0) a
a zero modes; and the massive h

(~n)
µν and r(0) = S

(~n) a
a KK

modes.

The existence of a massless radion zero mode is a problem since it would modify gravity at
long distances. In this context, the masslessness of the radion correponds to a flat “potential”
for expanding or shrinking the radius R of the extra dimensions. A stabilization mechanism
is needed to fix this, and the massless radion is expected to develop a mass as a result [10].

1.3 Experimental Tests and Constraints

The new graviton KK modes predicted by LED models are constrained and are being looked
for in a number of ways. The strongest bounds typically come from deviations from 1/r2

gravity and modifications to stellar evolution, while searches for the new KK states are
underway at the LHC. Limits on LED are usually quoted in terms of a lower bound on M∗

for a given number of extra dimensions n. Recall that we want M∗ . TeV for this scenario
to address the electroweak hierarchy problem. A more detailed discussion can be found in
Ref. [14].

Light graviton (or radion) KK modes can modify the 1/r2 behaviour of the gravitational
force at short distances, r . R. Such deviations have been investigated, and it is standard
practice to parametrize them according to

V (r) = − 1

8πM2
Pl

m1m2

r

(

1 + αe−r/λ
)

, (25)

where λ and α are dimensionless parameters. For the first deviations from massive KK
gravitons, we expect α = 1 and λ = R. The current limit for α = 1 is λ ≤ 44µm [15]. This
rules out n = 1, and forces M∗ & 1.4 TeV for n = 2, but does not provide a useful constraint
for n ≥ 3.

The LED theory with KK modes at M∗ ∼ TeV only works as an effective theory valid
at energies below E . M∗, and the physics above this is unknown. This new physics, which
includes quantum gravity, is likely to generate non-renormalizable operators involving SM
fields such as

−L ⊃ 1

M2
∗

(f̄1Γf2)(f̄3Γ
′f4) , (26)
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Figure 1: . [17]

where f1,2,3,4 are SM fermions, and Γ and Γ′ are Dirac structures. If such operators violate
baryon and lepton number, limits on nucleon decay force M∗ & 1016 GeV. If they generate
new flavour mixing of CP violation, M∗ & 106 GeV. And even if they respect all the
symmetries of the SM, precision electroweak constraints limitM∗ & 10 TeV. The suppression
of these operators cannot be addressed within the LED effective theory, but they are a cause
for concern.

Collider experiments have also searched for the direct production of KK modes. These
modes would typically escape the detector without leaving a trace, and they would therefore
contribute to missing energy. The coupling of the SM to any single mode is tiny, suppressed
by MPl, but there are many modes to sum over, and this makes the effective cross section
potentially observable. Once all the accessible modes are summed over, the cross section
scales like 1/M2

∗ rather than 1/M2
Pl. Searches at the LHC often focus on events with a single

hard jet and a large amount of missing energy, and current data limitsM∗ & 5.5, 4.3, 3.2 TeV
for n = 2, 3, 6, as can be seen in Fig. 1 [16, 17].

The many light KK modes predicted by LED theories can also contribute to astrophysical
processes. In particular, they can cause supernovae to cool more quickly that they would
otherwise. This can occur through the production of KK gravitons in the high-energy particle
collisions, corresponding to temperatures of about T ≃ 50 MeV, which then escape the
supernova envelope. The strongest limits come from observations of SN1987A, and giveM∗ &

50, 4, 1 TeV for n = 2, 3, 4 [18]. For n > 4, there is no limit because the SN temperature is
not high enough to produce the heavier KK gravitons efficiently.

2 Warped Extra Dimensions

A second approach to diluting the effective strength of gravity makes use of localization
within an extra dimension.

7



3 Warping and Strong Coupling
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