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A second approach to the hierarchy problem is to remove the Higgs as fundamental scalar.
This can be done be replacing the fundamental Higgs scalar with a composite scalar bound
state held together by a new strongly-interacting force. A related possibility, that has been
mostly ruled out by the discovery of a SM-like Higgs boson, is that the new strong dynamics
itself induces electroweak symmetry breaking. We will go over some of these ideas in these
notes. Before discussing new forces, however, we will review some aspects of QCD and its
relationship with electroweak symmetry breaking. This will serve as useful reference for the
material to follow.

1 Aspects of QCD

Quantum Chromodynamics (QCD) is the accepted theory of the strong force. It is an SU(3)
gauge theory with matter quark fields transforming under the fundamental 3 irrep of the
gauge group. The fundamental Lagrangian is:

L = −1

4
Ga

µνG
aµν +

∑

I

q̄I(iγ
µDµ −mI)qI , (1)

where I = u, d, s, c, b, t, and

Dµ = ∂µ + igst
a
3G

a
µ, (2)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν . (3)

The matrices ta3 are of course the (eight) generators of the 3 of SU(3). Gauge charges are
called colour while the different species of 4-component Dirac fermion quarks are called
flavours. The masses mI of the different quark flavours are approximately

mu ≃ 2.5 MeV, md ≃ 5.3 MeV, ms ≃ 110 MeV,
mc ≃ 1.25 GeV mb ≃ 4.5 GeV, mt ≃ 173 GeV.

(4)

Of course, this structure fits in nicely with the rest of the SM, with the quark masses arising
from electroweak symmetry breaking.

While the underlying QCD Lagrangian is very simple, the resulting dynamics are any-
thing but. We never actually observe quarks or gluons as free asymptotic particles. Instead,
at low energies (or long distances) we only ever see colour-neutral bound states of quarks
and gluons. This stands in stark contrast to QED, where we certainly do see free particles
charged under the gauge group – electrons for example. The absence of free colour-charged
objects is called confinement.

Confinement is still not completely understood at the quantitative level. A large part of
the reason for this is the breakdown of perturbation theory in QCD at low energies. Despite
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these challenges, it is still possible to construct a useful low-energy EFT for the bound states
resulting from QCD confinement. Collectively these bound states are called hadrons, and the
most important examples are mesons and baryons. The quantum numbers of these states
can be matched to the colour-neutral quark operators

M ∼ q̄iq′jδ
i
j, B ∼ qiq

′
jq

′′
kǫ

ijk, (5)

where i and j are colour indices.

1.1 Running Couplings at High Energy

A very rough idea of where confinement comes from can be obtained by examining the
scale dependence of the renormalized QCD coupling gs(µ). Here, µ corresponds to the scale
at which the coupling is renormalized. When µ ∼ p, the value of this coupling coincides
reasonably well with the physical QCD coupling strength in a process occurring at the
characteristic momentum scale p. In a generic gauge theory, the running coupling g(µ) can be
obtained by measuring the coupling at one momentum scale and solving the renormalization
group (RG) equation to extrapolate it to other momentum scales. At one-loop order, the
RG equation is [1]

dg

dt
:= β(t) = − b

(4π)3
g3 (6)

where the coefficient b is given by

b =
11

3
C2(A)−

∑

r

2

3
T2(r)−

∑

r′

1

3
T2(r

′), (7)

where C2(A) is the Casimir of the adjoint (equal to N2 − 1 for SU(N)), T2(r) is the trace
invariant of the representation r (equal to 1/2 for a fundamental of SU(N)), t = ln(µ/µ0),
the first sum runs over all light 2-component fermion reps in the theory, and the second sum
runs over all light complex scalar reps. By “light”, we mean all reps with mass m < µ. As
µ falls below the mass of a particle in the (effective) theory, we implicitly remove it from
the EFT so that it no longer contributes to the RG running. The leading-order matching
condition for the running gauge coupling at the mass threshold µ = M is simply

lim
µ→M−

g(µ) = lim
µ→M+

g(µ). (8)

That is, the running coupling is continuous across the mass threshold.

In QCD, for µ > mt we have

bQCD =
11

3
× 3 − 2

3
× 1

2
× 2× 6 = 7. (9)

In the second term, the 1/2 comes from T2(3) = 1/2, the 2 comes from the left and right
2-component parts of each quark, and the 6 comes from the six quark flavours. At lower
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energies, the RG beta-function coefficient becomes

bQCD =















7 µ > mt

23/3 mb < µ < mt

25/3 mc < µ < mb

. . .

(10)

We can now compute the value of gs(µ) at other values of µ after inputting the measured
boundary value of the coupling,

αs(mZ) ≡
g2s(µ)

4π
∼ 0.118, (11)

into to the solution of Eq. (6).

Note that the sign of the RG coefficient bQCD is such that the strong coupling becomes
weaker at high energies. This property is called asymptotic freedom.1 The flip side of this
is that the QCD coupling grows large at low-energies. We can use this property to derive a
dimensionful scale from the dimensionless QCD coupling. The solution to the RG equation
(between thresholds) is

1

αs(µ)
=

1

αs(µ0)
+

bQCD

2π
ln

(

µ

µ0

)

. (12)

With this in hand, it makes sense to define the QCD scale ΛQCD as the point where α−1
s (µ)

vanishes. This yields

αs(µ) =
2π

bQCD ln(µ/ΛQCD)
. (13)

The appearance of a dimensionful scale from a dimensionless (but scale-dependent) coupling
is called dimensional transmutation. Numerically, ΛQCD ≃ 200 MeV, and this value charac-
terizes the onset of strong coupling in QCD. In practice, QCD becomes strongly-coupled a
little earlier than this, near E ∼ 1 GeV, which is roughly the mass scale of the light baryons.

1.2 QCD at Low Energies

At low energies, E . 1 GeV, the QCD degrees of freedom one observes are mainly baryons
and mesons. It is therefore much more efficient to describe this system with a field theory
that treats these as the dynamical fields instead of using the seemingly more fundamental
quarks and gluons. In other words, we want the low-energy EFT of QCD.

This isn’t so easy to come by. Quarks and gluons are weakly-coupled at energies well-
above ΛQCD, and baryons and mesons are weakly-coupled at energies much below it, but there
is strong coupling in between where we would like to match them up. Without perturbation
theory, one must address the full dynamics of the theory. This is done numerically using

1 This property is a very special feature of non-Abelian gauge theories.
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lattice field theory to simulate the strongly-coupled dynamics of gluons and quarks [2, 3].
A second approach, the one we will discuss here, is to simply write an effective low-energy
theory with the appropriate set of degrees of freedom and all possible interactions consistent
with the underlying symmetries [4, 5, 6]. The coefficients of these interactions can be set by
comparing to observation, or by computing them from QCD using lattice simulations.

To derive an EFT for low-energy QCD, a very helpful observation is that the u and d
quarks are both very light relative to ΛQCD, the s quark is somewhat light, and the other
quarks are relatively heavy. Thus, to study the lightest QCD degrees of freedom we should
be able to integrate out the c, b, and t quarks and work only with the u, d, and s quarks.
To simplify the discussion here, let’s also ignore the s quark for now and treat the u and d
quark masses as small corrections that we will handle perturbatively.

With only the u and d quarks, and neglecting their very small masses (relative to ΛQCD ∼
200 MeV), the QCD Lagrangian of Eq. (1) has a global SU(2)L × SU(2)R ×U(1)V ×U(1)A
flavour symmetry under which the fields transform as

qL I → eiαV eiαALIJqLJ , qRI → eiαV e−iαARIJqRJ , (14)

where q = (u, d)t, I, J = u, d, and L and R are SU(2) transformations for the fundamental
rep in flavour space. Of the factors making up this global symmetry group, only the U(1)A
part is anomalous with respect to QCD (SU(3)c), meaning that the remaining factors are
all good symmetries at the quantum level. Therefore we should try to build a low-energy
effective theory that is symmetric under Gflav = SU(2)L × SU(2)R × U(1)V .

Before attempting to write down such a theory, let us mention one additional and essential
fact: strong coupling in QCD generates an expectation value for the gauge-invariant q̄q quark
operator

〈q̄RJqL I〉 = Λ3
QCDδIJ , (15)

where I and J run over u, d, and s. This quark condensate expectation value does not respect
the full (non-anomalous) global symmetry group. Applying a general Gflav transformation
to this operator, the expectation value is not invariant and changes into

Λ3
QCDδIJ → Λ3

QCD(LR
†)IJ . (16)

Thus, the q̄q expectation value spontaneously breaks Gflav to a smaller subgroup. It is not
hard to see that this subgroup is Hflav = SU(2)V × U(1)V , where SU(2)V is the subgroup
of SU(2)L × SU(2)R transformations with L = R. The global Gflav symmetry is sometimes
called a chiral symmetry, and its breaking is referred to as chiral symmetry breaking.

This spontaneous breakdown of Gflav → Hflav has three broken generators, and we
expect three corresponding massless Nambu-Goldstone bosons (NGBs). Since the other QCD
degrees of freedom are generically expected to pick up masses on the order of ΛQCD, it makes
sense to build a low-energy EFT with only these NGBs as the light degrees of freedom. Once
we do, we will try to identify these light NGB fields with observed particles. The unbroken
SU(2)V symmetry is called isospin, while the unbroken U(1)V corresponds to baryon number
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(up to an overall normalization of the generators). Since chiral symmetry breaking plays an
essential role in constructing this EFT, it is usually called chiral perturbation theory.

There isn’t a unique way to build the EFT for the NGBs, but we should at least make
sure the EFT respects the full underlying Gflav global symmetry, has three explicit degrees of
freedom, and that the corresponding field excitations vanish in the vacuum configuration of
the theory. A convenient way to accomplish these tasks is to use field variables that look like
spacetime-dependent Gflav transformations acting on the vaccuum. Here, this corresponds
to building the theory out of the 2× 2 matrix of fields

Σ(x) = exp [2iΠa(x)ta/f ] , (17)

where ta = σa/2, the Πa(x) are the dynamical fields, and f is an as-yet unspecified parameter
with dimension of mass. Under Gflav transformations, this field matrix is assumed to
transform as

Σ(x) → LΣ(x)R†. (18)

Thus, Σ(x) transforms in the same way as the quark condensate, Eqs. (15,16).

It is instructive to look at how the Π fields transform under the action of Gflav and Hflav.
For this it is useful to write (without loss of generality)

L = eic
a
Ataeic

b
V tb , R = e−icaAtaeic

b
V tb . (19)

In this form we see that SU(2)V coincides with caA = 0. Acting with an infinitesimal SU(2)V
transformation on Σ (L = R ≡ V ) we find that

Σ(x) → V ΣV † = exp
[

2i VΠa(x)taV †/f
]

, (20)

and that

Πa → Π′a =
(

δac − fabccbV
)

Πc +O(c2V ). (21)

Thus Π transforms linearly and in the adjoint representation of SU(2)V . Under transforma-
tions by the broken generators (i.e. cV = 0), we find that

Π → Π′ = Π+ fcaAt
a +O(c2A). (22)

This is a non-linear transformation on Π, and it takes precisely the shift form we expect
for a Goldstone boson field. These nice transformation properties are the reason why the
seemingly funny choice of field variables made in Eq. (18) is so useful.

We can now write down a Lagrangian in terms of the field variables Σ. Even though
part of Gflav is spontaneously broken, the low-energy effective Lagrangian should still be
symmetric under the full group. Looking simplest real and symmetric combination of Σ fields
is Σ†Σ = I = ΣΣ†, but this is trivial. To get something non-trivial, we need derivatives. The
lowest-order term is

∂µΣ
†∂µΣ → R(∂µΣ

†∂µΣ)R† (23)
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implying that the trace tr(∂Σ† ·∂Σ) is real and invariant under the symmetries. Thus, the
lowest-order term one can write within this theory is

Lp2 =
f 2

4
tr(∂Σ† ·∂Σ) (24)

=
1

2
(∂Πa)2 +

1

3f 2
tr[(∂Π · Π)2] + . . .

The first term is a canonical kinetic term for the Π fields while the second is an interaction
term. Relative to the first term, the leading interaction is suppressed by a factor of p2/f 2.
Higher-order terms in the expansion of this operator are suppressed by additional powers of
p2/f 2. Thus, this theory is only useful as an EFT valid for p2 ≪ f 2.

The next set of terms come with suppressions of at least p4/f 4. They are

Lp4 = L1

[

tr(∂Σ† ·∂Σ)
]2

+ L2 tr(∂µΣ
†∂νΣ) tr(∂

µΣ∂νΣ) (25)

+ L3 tr(∂µΣ
†∂µΣ ∂νΣ

†∂νΣ),

where L1, L2, and L3 are unknown dimensionless coupling constants. Note that all these
terms involve only derivatives of Σ, which is required by the non-linear transformation
properties of this field under transformations induced by the spontaneusly broken generators.
There is an infinite set of even higher-order terms that can be added. In practice, however,
as long as p2 ≪ f 2 and we require a finite level of accuracy in our theoretical predictions,
only a finite set of operators need be considered.

With a sensible EFT in hand, the next step is to connect the dynamical fields it contains
to physical particles and to fix the numerical value of f (and the other couplings). We
can identify the electromagnetic charges of the Πa fields by noting that a subgroup of
SU(2)V × U(1)V coincides with (spacetime independent) QED gauge transformations. The
corresponding generator is2

Q ≡ t3L + t3R +
1

6
I. (26)

Applying such a transformation to Π, we find that its components have electric charges
Q = 0, ±1, with

π0 = Π3, π± =
1√
2
(Π1 ∓ iΠ2). (27)

It is natural to identify these states with the lightest strongly-interacting colour-singlet pat-
icles: the neutral and charged pions. Furthermore, the pions are known to be pseudoscalars,
which is also true for NGBs. At this point the pions in our EFT are exactly massless whereas
the real pions have masses of about 135 MeV. We will see shortly how to account for this
apparent discrepancy.

2We are treating QED as a small perturbation on QCD here, and it should be clear that this exact gauge

symmetry explicitly breaks the global flavour symmetries we are discussing by a small amount.
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We would also like to fix the dimensionful parameter f in our theory. For this, we can
match the conserved current operators in both the underlying QCD theory of quarks and
gluons with the current operators in the pionic EFT. In the quark theory we have

jµV = q̄γµq, jµA = q̄γµγ5q

jaµL = q̄γµPLt
aq, jaµR = q̄γµPRt

aq.
(28)

In the EFT, we find using Noether’s theorem

jµV = i
(

π+∂µπ− − π−∂µπ+
)

+ . . .

jaµL = −i
f 2

2
tr(Σ†ta∂µΣ) = f tr(ta∂µΠ) +O(Π2), (29)

jaµR = −i
f 2

2
tr(Σ ta∂µΣ†) = −f tr(ta∂µ Π) +O(Π2).

Consider now the decay of a negatively charged pion. This proceeds through a W−, and its
amplitude is proportional to the matrix element

〈µ−ν̄µ |Hint|π−(p)〉 (30)

with the interaction operator given by

Hint =
g2

2m2
W

(ūγµPLd) (µ̄γµPLνµ). (31)

Contracting fields with external states, the matrix element factorizes into a simple leptonic
piece, and a complicated hadronic piece given by

〈0 |ūγµPLd |π+(p)〉 ≡ i
1√
2
fπp

µ, (32)

where the right-hand side is fixed by Lorentz invariance. Now, we can write this quark
operator in terms of a current

ūγµPLd =
(

j1µL + j2µL

)

=
1√
2
f ∂µπ− +O(π2). (33)

Plunking this into the pion matrix element, we see that to leading order

f = fπ ≃ 93 MeV, (34)

where the latter numerical value is extracted from the measured the rate of pion decays.
Measurements of pion scattering can be used in a similar way to fix the values of L1, L2,
and L3.

The last piece of the puzzle is explaining the pion masses. Recall that in setting up our
EFT for pions, we purposely ignored the small u and d quark masses. These can be put
back in and treated as small perturbations since mu,d ≪ f . Even though they are small,
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these masses play an essential role because they explicitly break SU(2)L × SU(2)R down
to SU(2)V for mu = md, and down to nothing at all for mu 6= md (which seems to be the
case). As a result of this explicit breaking, our SU(2)L × SU(2)R global symmetry is only
approximate, with symmetry breaking effects on the order of mu,d/f . The would-be NGB
pions are now only pseudo-NGBs that have small but non-zero masses proportional to mu

and md.

We will write the quark mass matrix as M = diag(mu, md), so that

−L ⊃ q̄RMqL + q̄LM
†qR. (35)

If this fixed matrix did transform along with the quark fields under Gflav according to

M → RML†, (36)

we would regain the full Gflav invariance. Of course it doesn’t, but if we pretend it does
and impose Gflav symmetry with this imagined transformation law, we can keep track of the
symmetry breaking effects in an organized way. The leading EFT term that can be written
with this in mind is

−L ⊃ 1

2
Λ̃3 tr(MΣ) + h.c. (37)

where we expect Λ̃ ∼ ΛQCD. Expanding this out, we find a pion mass term of

m2
πf

2
π = Λ̃3(mu +md). (38)

As expected, the pion masses go to zero as the underlying quark masses vanish.

So far we have neglected the strange quark, but it turns out to be a pretty good
approximation to include it as well, treating its mass as another small perturbation. The
resulting theory now has an approximate SU(3)L×SU(3)R×U(1)V global symmetry that is
spontaneously broken by the QCD vacuum down to SU(3)V ×U(1)V . This produces an octet
of eight (pseudo-) NGBs that can be identified with the pions and kaons. More precisely,
the components of Σ now correspond to

Πata =
1√
2





π0/
√
2 + η/

√
6 π+ K+

π− −π0/
√
2 + η/

√
6 K0

K− K̄0 −2η/
√
6



 . (39)

As before, we can derive the approximate masses of these states by adding the 3 × 3 mass
matrix M = diag(mu, md, ms) to the theory as a small perturbation. These masses agree
pretty well with the observed values. A different set of technology is needed to describe
mesons involving c and b quarks. The top quark, being very heavy, decays too quickly to
form meson bound states.

Low-energy QCD also involves baryons and more complicated meson excitations. These
cannot be identified with NGB modes, and are somewhat harder to describe in an EFT.
The presence of an approximate global SU(3)V × U(1)V still turns out to be very useful in
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Figure 1: Total cross section and ratio R(s) for inclusive hadronic production in e+e−

collisions as functions of the CM energy
√
s.

organizing the various baryon states, and the lowest-lying modes naturally fill out singlet
and octet representations. These symmetries also constrain the form of interactions between
baryons and mesons, and symmetry breaking effects can again by added perturbatively.

Before finishing up, let us mention a couple of additional points. First, we have not looked
into the effects of electromagnetism on the chiral perturbation theory EFT we have discussed.
Relative to the dominant QCD dynamics, we can treat QED effects as small perturbations
to the leading behaviour we have discussed here. In a few cases, however, QED effects can
be very important. In particular, the Gflav global symmetry we have discussed is broken
explicitly by QED (e.g. the u and d quarks transforming as SU(2)L,R doublets have different
QED charges), and it also has an anomaly with respect to QED. The explicit breaking leads
to electromagnetic contributions to the pion masses that split the values of the charged and
neutral states. The anomaly in Gflav relative to QED leads to a coupling between the π0

and two photons. It turns out that this anomaly-induced coupling leads to the dominant
decay channel of the neutral pion: π0 → γγ has a branching fraction of nearly 99%.

Second, going beyond chiral perturbation theory, there are also many heavier QCD
excitations. Even though it is very difficult to predict their masses, we do expect them to
respect the approximate Gflav global symmetry and to appear in complete representations of
the unbroken Hflav subgroup. The neutral components are often identified experimentally as
resonances in e+e− → hadrons. This can been seen in Fig. 1, where we show the measured
hadronic production cross section and the ratio R(s) = σ(e+e− → hadrons)/σ(e+e− →
µ+µ−).
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2 Technicolor

Strongly-coupled theories of electroweak symmetry breaking attempt to achieve this breaking
in much the same way as chiral symmetry breaking in QCD. In fact, if the SM did not have a
Higgs boson, EWSB would still occur through QCD effects, although at energies near ΛQCD.
Technicolor theories are extensions of the SM where an analagous mechanism of EWSB is
realized by adding a new technicolor gauge force that becomes strong near 100 GeV (rather
than ΛQCD ∼ 100 MeV). In this section we will show how QCD would lead to EWSB in the
absence of a Higgs, and then scale this picture up to a technicolor theory.

2.1 QCD and Electroweak Symmetry Breaking

Consider a simplified version of the Standard Model containing the full SU(3)c × SU(2)L ×
U(1)Y gauge invariance but with no Higgs boson and only a single generation of fermions.
In this theory, it would seem that all the fermions are massless and the full SU(2)L ×U(1)Y
gauge invariance remains manifest. However, this is not quite the case; there would still be
electroweak symmetry breaking from QCD confinement and chiral symmetry breaking [7].

To see how this works, note first that the QCD portion of the theory has an approximate
SU(2)L×SU(2)R×U(1)V global symmetry, of which a SU(2)L×U(1)Y subgroup is gauged.
We can identify the gauged SU(2)L with the corresponding flavour symmetry, while a bit of
fiddling shows that hypercharge is generated by

Y = t3R +B/2 , (40)

where B is baryon number and coincides with U(1)V up to an overall normalization. We can
also identify the U(1)em subgroup of the electroweak group to be the portion generated by

Q = t3L + Y , (41)

which is just the standard relation (and consistent with Eq. (26)). Note that this is a
subgroup of SU(2)V × U(1)V .

As before, SU(3)c will run strong at low energies and generate a quark condensate as
in Eq. (15). This condensate will spontaneously break the axial part of the SU(2) global
symmetries. Applying SU(2)L and U(1)Y transformations to the quark fields, we also find
that the condensate will also break a portion of these as well. Therefore QCD confinement
will induce electroweak symmetry breaking! Furthermore, since the U(1)em subgroup is also
a subgroup of the unbroken global SU(2)V ×U(1)V subgroup, electromagnetism will remain
unbroken. Counting degrees of freedom, there are three broken generators and potentially
three NGBs. However, we also have SU(2)L × U(1)Y → U(1)em, so three of the NGBs will
be eaten to produce massive gauge modes. This means that there won’t be any physical
NGB modes left over.

To see that the would-be NGBs are eaten, let us try to write an effective theory for them.
The leading term that is consistent with the symmetries (in the limit g, g′ → 0) and also
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accomodates the gauged subgroup is

L ⊃ f 2

4
tr
(

DµΣ
†DµΣ

)

, (42)

where

DµΣ = ∂µΣ + igtaW a
µΣ− ig′BµΣ t3 . (43)

This form follows from the embedding of the electroweak group in Gflav. Note that the B
part of the hypercharge component cancels out. Expanding out Eq. (42), the leading terms
involving the vector fields are

L ⊃ f

2
gW+

µ ∂µπ− +
f

2
gW−

µ ∂µπ+ +
f

2

(

gW 3
µ + g′Bµ

)

∂µπ0 (44)

+
f 2

4

[

g2W+
µ W µ− + (gW 3

µ − g′Bµ)
2
]

.

The second line gives the usual mass terms for the weak vector bosons, while the bilinear
operators in the first line signal that the would-be pions are incorporated into the massive
vector bosons as longitudinal components. The resulting W and Z masses are

mW =
g

2
f , mZ =

√

g2 + g′2

2
f , (45)

which is just like the usual SM expressions but with v → f .

In contrast to electroweak symmetry breaking by a fundamental Higgs scalar, there is
no hierarchy problem for this QCD realization. All the fermions and gauge bosons are
effectively massless at high energies by gauge invariance. Going to lower energies, a scale
ΛQCD is generated by dimensional transmutation. This scale can be expressed in a suggestive
way by rewriting Eq. (13):

ΛQCD ≃ Λ0e
−2π/bQCDαs(Λ0) , (46)

where Λ0 is some fundamental input scale (such as MPl). The large ratio between ΛQCD

and the input scale here is a natural consequence of the logarithmic running of αs(µ), which
gives rise to an exponential of a dimensionless number of order unity.

2.2 Scaling Up QCD to Technicolor

Using QCD for electroweak symmetry breaking does not work in practice for many reasons,
including the vector boson masses being much too small (with f = fπ = 94 MeV). The idea
of technicolour (TC) is to add a new non-Abelian gauge group GTC to the SM together with
additional techniquarks that are charged under both GTC and SM electroweak [7]. If the TC
group runs strong above the weak scale, the techniquarks will develop a vacuum condensate
that induces the breaking SU(2)L × U(1)Y → U(1)em in nearly the same way as QCD in
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the discussion above. Also as before, this theory does not have an electroweak hierarchy
problem.

A minimal TC model consists of a GTC = SU(NTC) gauge group with Nf sets of exotic
fermions QL and QR with gauge charges [7]

QL =

(

UL

DL

)

= (NTC , 1, 2, 0) (47)

QR = (UR, DL) = (NTC , 1, 1,±1/2) (48)

where the brackets refer to SU(NTC)×SU(3)c×SU(2)L×U(1)Y . The charges of the exotic
techniquarks are chosen so that no gauge anomalies arise provided NTC is even.3 In exactly
the same way as for QCD, we can identify the global symmetries of the theory and deduce
the set of NGBs that arise from its sponteneous breakdown through fermion condensation.

Let us assume that the SU(NTC) gauge coupling runs large to give

〈QRJ
QLI

〉 = δIJ Λ
3
TC , (49)

with I, J = 1, 2, . . . , Nf run over all the exotic fermions. If the underlying Lagrangian for
these techniquarks contains only gauge-covariantized kinetic terms, it has a global SU(2Nf)L×
SU(2Nf )R × U(1)V flavour symmetry, of which a SU(2)L ×U(1)Y subgroup is gauged (just
like in the QCD example above). The techniquark condensate spontaneously breaks the
flavour symmetry down to its SU(2Nf )V × U(1)V subgroup. Along the way, the gauged
SU(2)L×U(1)Y subgroup is broken down to U(1)em. This implies that (2Nf)

2−1 generators
are broken, yielding (2Nf)

2 − 4 physical NGBs and three longitudinal vector boson modes
for the W± and Z0.

These degrees of freedom can be identified explicitly by writing a low-energy EFT for the
(2Nf)

2 − 1 would-be NGBs in terms of

Σ = exp [2iΠa(x)ta/fTC] , (50)

where now ta are the generators for the fundamental of SU(NTC) and Σ → LΣR† under the
SU(2Nf )L × SU(2Nf )R flavour symmetry and we expect fTC ∼ ΛTC . The leading term in
the effective Lagrangian for Σ is

L =
f 4
TC

4
tr
(

DµΣ
†DµΣ

)

, (51)

with the covariant derivative now given by

Dµ = ∂µ + ig(ta ⊗ INf
)W a

µΣ− ig′BµΣ (t3 ⊗ INf
) , (52)

where (ta⊗ INf
) is the (2Nf)× (2Nf ) matrix with the 2×2 matrix ta in each of the Nf ×Nf

diagonal sub-blocks. Expanding the Lagrangian term out in terms of component fields, we
find something that looks like Nf copies of Eq. (44) but with the pion fields identified with

3In the SM, gauge anomalies cancel within each generation between quark and lepton contributions.
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composites of the techniquarks rather than the regular quarks. All Nf flavours contribute
equally to the NGB modes and the vector boson masses, which are given by

m2
W =

g2

2
NffTC , m2

Z =
g2 + g′2

2
NffTC . (53)

Since we know the gauge couplings and the vector masses, this lets us fix the scale of
techniquark condensation to be on the order of ΛTC ∼ fTC =

√
2mW/(g

√
Nf) ∼ 100 GeV.

While this minimal TC theory provides an elegant mechanism for electroweak symmetry
breaking, it is also inconsistent with observation several reasons:

1. All the SM fermions are massless, even after EWSB.

2. The theory has massless technipion NGB modes for Nf > 1.

3. There is a conserved technibaryon number symmetry, and the lightest technibaryon
state is stable and problematic for cosmology [8].

4. It is not clear whether there exists a scalar excitation in the theory that can be idetified
with the observed Higgs boson.

Fixing these problems is non-trivial, and seems to force us to extend this simple theory in
very complicated ways.

2.3 Extended and Walking Technicolour

Fixing the first three problems with TC listed above can be achieved by connecting the
techniquarks to the SM in some. To do this at the renormalizable level, new bosons are
needed. Since adding a scalar would likely reintroduce a hierarchy problem, this suggest
that it is more promising to connect the two sectors through gauge bosons. This is the
approach of extended technicolor (ETC).

In ETC constructions, some part of the SM gauge groups GSM = SU(3)c × SU(2)L ×
U(1)Y and GTC are embedded within a larger gauge group GETC ⊃ GSM × GTC , and
techniquarks and SM fermions are joined together within representations of GETC . At some
large scale ΛETC > ΛTC, a spontaneous breaking of GETC → GTC × GSM is assumed to
occur, presumably through a similar fermion condensate mechanism. This yields a set of
massive ETC vector bosons with masses on the order of ΛETC. Integrating them out, one
obtains four-fermion operators of the very schematic form

−L ⊃ 1

Λ2
ETC

(QQ)(QQ) +
1

Λ2
ETC

(QQ)(ff) +
1

Λ2
ETC

(ff)(ff) , (54)

where Q is a technifermion and f is a SM fermion. These three operators are each repre-
sentative of a set of many operators of this general form, and they can be both helpful and
dangerous.
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The first term in Eq. (54) will generate an explicit mass term for the technipions when
the techniquarks condense near ΛTC . This yields technipion masses on the order of

mΠTC
∼ Λ2

TC

ΛETC

. (55)

The second term in Eq. (54) gives explicit SM fermion masses after techniquark condensation
on the order of

mf ∼ Λ3
TC

Λ2
ETC

(56)

These masses are of reasonable size for the lighter generations, but they tend to be too
small to account for the third generation. If we try to generate a charm mass from them,
mc ∼ 1 GeV, this suggests that ΛETC . TeV once we fix ΛTC ∼ 100 GeV to give the
correct vector boson masses. These mixed operators can also allow technibaryons to decay
to SM baryons. The third term in Eq. (54) connects SM fermions with each other, and
operators of this type can be very dangerous. In particular, they can lead to new sources
of flavour violation among the SM fermions. Current bounds on mixing of this type suggest
ΛETC & 106 GeV, which is inconsistent with the ETC generation of the charm and strange
masses discussed above.

To fix the top mass, different connections of the third generation to the technicolor
group have been suggested that allow for additional contributions to the top and bottom
masses [9]. The remaining flavour problem for the lighter generations can be addressed
by walking technicolor, in which strong technicolour renormalization effects between ΛETC

and ΛTC enhance the (QQ)2 and (QQ)(qq) operators relative to the (qq)2 terms [10]. This
enhancement allows ΛETC to be much larger than one would expect based on the scaling
arguments above while still allowing for ETC couplings to generate the first- and second-
generation quark masses.

Finally, let us mention that both TC and ETC also have some tension with precision
tests of the SM weak sector. This arises from the quantum corrections of the techniquarks
(which carry electroweak charges) to the self-energies of the electroweak vector bosons. These
corrections are often parametrized in terms of a set of oblique parameters S, T , and U . The
specific corrections depend on the underlying ETC or TC theory, but they tend to be too
large unless there is some degree of seemingly accidental cancellation.

3 Composite and Little Higgs

The fourth problem with TC listed above, the absence of an obvious scalar state that can
identified with observed Higgs boson, is not addressed by just extending the TC structure.
This suggests that we should try a different approach. A nice way to do this that still relies
on new strong dynamics is to generate the Higgs scalar as a composite bound state of more
fundamental objects. In these composite scenarios, the resulting Higgs scalar can generate
some or all of the fermion masses and electroweak symmetry breaking.
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Given the strongly-coupled nature of TC-like dynamics, it is not usually not possible to
compute the spectrum or the low-energy couplings analytically. The typical expectation in
such theories is that the masses of the bound states should be close to fTC ∼ ΛTC . Suppose
we try to identify a Higgs-like scalar H with such a bound state. If mH ∼ fTC , there will
not be a clear separation of the electroweak symmetry breaking from the Higgs and the
contribution from the strong dynamics. Furthermore, fTC ∼ mW ∼ mh ∼ 100 GeV suggests
that it is challenging to satisfy precision electroweak tests.

Most recent attempts to realize the Higgs boson as a composite state try to identify it
with an approximate NGB mode [11]. Recall that NGBs, either exact or approximate, are
the exceptions to the expectation of m ∼ fTC for bound states. A parametrically lighter
pseudo-NGB (pNGB) Higgs boson is attractive for two related reasons. First, it gives a
natural separation between the weak scale and fTC , and allows us to treat the Higgs field
cleanly as a scalar field in an EFT valid below fTC . In this EFT, electroweak symmetry
breaking is (mostly) induced by the Higgs VEV in much the same way as in the SM. A
second consequence of fTC > mW is that the corrections to precision electroweak observables
are not as large. We will discuss composite Higgs theories in more detail later in the context
of theories with extra dimensions.

A related class of theories that relate the Higgs field to an approximate NGB of a
spontaneously broken theory are Little Higgs models [12, 13]. These are built as effective
field theories written in terms of non-linear sigma models with a built-in cutoff Λ ∼ 4π f
based up the underlying global symmetry breaking pattern G → H , very much like the
effective theories we constructed above for QCD and technicolor. In contrast to QCD or TC,
however, LH theories are constructed without reference to the specific dynamics at energies
near f . This may be a strong coupling transition or something else. As such, LH theories
only push a solution to the full hierarchy problem by an order of magnitude

Little Higgs models also seek to protect the Higgs beyond just the protection from
realizing it as an approximate NGB through the mechanism of collective symmetry break-
ing [14, 15]. Consider a theory with a global product group symmetry structure G =
G1 × G2, of which a subgroup G is gauged such that each Gi factor contains a copy of
the SM electroweak group. Upon breaking G → H , the gauged subgroup is broken to the
SU(2)L×U(1)Y electroweak group of the Standard Model. Note that by gauging a subgroup
of G, the global symmetry is explicitly broken and the would-be NGBs from the spontaneous
symmetry breaking at f acquire masses. The Higgs is embedded in this symmetry structure
as an exact NGB if one or the other of the gauge couplings g1 or g2 ofG1×G2 vanishes [14, 15].
Put the other way around, both g1 and g2 must be non-zero for the Higgs boson to develop
a mass, and thus they collectively break the global symmetry group G. This implies that
quadratic corrections to the Higgs mass must vanish at one-loop order, but allows them to
return at two loops. The protection at one-loop arises from the cancellation of corrections
between SM loops and loops of partner particles required by the underlying global symmetry
structure. This is similar to supersymmetry, but now the partners have the same spins as
their SM counterparts.
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