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Supersymmetry (SUSY) is the most popular proposal for new physics beyond the SM. For
every known particle, SUSY predicts that there exists a superpartner particle with the same
charge but with spin differing by half a unit. The most attractive feature of SUSY is that
it can resolve the electroweak hierarchy problem by inducing cancellations in the quantum
corrections to the Higgs mass parameter. SUSY can also provide a dark matter candidate
and account for the baryon asymmetry, it appears to lead to a unification of the SM gauge
couplings close to the Planck scale, and it is an essential component in many attempts to
construct a quantum theory of gravity. For these many reasons, SUSY is promising possibility
for BSM physics and it is being searched for enthusiastically at the LHC.

To illustrate how SUSY addresses the electroweak hierarchy problem, suppose there exists
a new fermion Ψ together with its superpartner boson Ψ̃, both with a coupling yΨ to the
Higgs field. The equality of this coupling is enforced by supersymmetry. Together, the net
leading quantum correction to the Higgs quadratic parameter for this particle-superpartner
pair is

∆µ2 ≃ y2Ψ
(4π)2

(
M2

Ψ̃
−M2

Ψ̃

)
. (1)

This correction is acceptably small, ∆µ2 . µ2, provided the masses of the particle and its
superpartner are not too different. Numerically, we have µ ∼ 100 GeV, so if SUSY is to
address the hierarchy problem the superpartners of the SM particles should not be too much
heavier thanMΨ̃ . (4π/yΨ) (100 GeV). This motivates LHC searches for superpartners with
masses in the TeV range.

In these notes, we will give a general overview of SUSY and its phenomenological exten-
sion to the SM. We will begin with a practical overview of SUSY and discuss how to construct
supersymmetric Lagrangians. Next, we will apply this to build a supersymmetric extension
of the SM. Finally, we will come back to study the underlying structure of supersymmetric
theories in slightly more detail. For more detailed discussions of supersymmetry and its
applications to particle physics and beyond, I highly recommend the reviews of Refs. [1, 2]
and the textbooks of Refs. [3, 4].

1 Supersymmetry Basics

We begin with a practical overview of SUSY and the structure of supersymmetric field
theories. Before getting to SUSY itself, let us review a few key results for the Poincaré
group.
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1.1 Poincaré and Particles

Our Universe is symmetric locally under Lorentz transformations (boosts and rotations) and
translations to within experimental accuracy. Together, this set of transfomations is called
the Poincaré group. Because of the apparent invariance under Poincaré, it is convenient to
construct theories of elementary particles using variables that transform linearly under the
group. We will see that these nice variables can often be identified with particles of definite
spin and momentum.1

A description of a group in terms of linear transformations is called a representation [5].
In particular, for every group element g there is a linear operator (matrix) M(g) such that
M(1) = I and M(f ·g) = M(f)M(g). The Poincaré group is a Lie group, meaning that
it is a group with infinitely many elements that we can parametrize with a finite set of
coordinates {αa}. Any group element in a representation that is smoothly connected to the
identity can be written in the form M(αa) = exp(−iαata) for some set of linear operators ta

called generators. This form is convenient because it implies that to build a representation
of the group (with infinitely many elements), we only need to find a represenation of a finite
number of generators. For any Lie group, these generators can be shown to satisfy a Lie

algebra such that

[ta, tb] = ifabctc for some constants fabc (2)

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0 (Jacobi Identity) (3)

The appearance of commutators and exponentiation should be familiar from quantum me-
chanics. Indeed, you have already been constructing representations of Lie groups for a while
now, even though it may not have been presented to you in this language.

The Poincaré group has ten generators that we can choose to be {P µ, Jµν}, where
µ = 0, 1, 2, 3 are Lorentz indices and Jµν = −Jνµ is antisymmetric. The four P µ generate
spacetime translations and the six independent Jµν generate Lorentz boosts (J0ν) and
rotations (J ij). Their commutation relations (Lie algebra) are

[P µ, P ν] = 0 (4)

[P µ, Jρσ] = i (ηµρP σ − ηµσP ρ) (5)

[Jµν , Jρσ] = −i (ηµρJνσ − ηνρJµσ − ηµσJνρ + ηνσJµρ) , (6)

where ηµν is just the Minkowski metric.

Quantum fields are the standard variables used to describe elementary particles. To build
a general quantum field theory that is invariant under Poincaré transformations, we begin
with field variables that transform under a definite representation of Poincaré, and then put
them together to form an invariant action. The general form of a Poincaré transformation
on a quantum field φA(x) such that x→ Λ x+ a is

φC(x) →
[
exp(− i

2
ωαβJ

αβ
j1j2

)

] D

C

φD(Λ
−1x− a) . (7)

1See my QFT lecture notes for a more detailed exposition of these topics [6].
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Here, ωαβ are a set of six real coordinates that specify a Lorentz transformation Λ such that

Λα
β = δαβ + ωα

β + . . ., C and D are the indices of the representation of the field, and Jαβ
j1j2

is a
set of finite-dimensional matrices.

It is not too hard to show that the Jαβ
j1j2

matrices corresponding to the Lorentz generators
can be built by combining pairs of SU(2) representations with spins (j1, j2). The dimension
of such a representation is just (2j1 + 1) × (2j2 + 1). The smallest representation is the
trivial one with (j1 = 0, j2 = 0) corresponding to Jµν

00 = 0. This is just a scalar field
whose excitations correspond to particles with spin s = 0. The standard Lorentz vector
representation is (1/2, 1/2), which has dimension four. Between the scalar and the vector,
the simplest non-trivial representations are (1/2, 0) and (0, 1/2). These corresond to two-
component s = 1/2 fermion fields, and they will play an important role in supersymmetry.
Higher representations describe fields with higher spins.

So far, we have concentrated on representations of the Poincaré group on fields. Since
we are interested in quantum theories, we should also consider the representations of the
group on quantum states. This is slightly more complicated than for fields because the
representation matrices on states must also be unitary, M †(g) = M−1(g) = M(g−1). It is
convenient to classify the representations of states according to the eigenvalues of

P 2 = P µPµ, W 2 = W µWµ (8)

where Wµ = −ǫµνρσJνρP σ/2. These two operators form a maximal set that commutes with
all the Poincaré generators; their eigenvalues are therefore Poincaré-invariant. The eigenvalue
of P 2 corresponds to the total mass M of the state. For M 6= 0, we can transform to the
rest frame of the state where P µ = (M,~0). This gives W 2 = −M2 ~J · ~J so its eigenvalues
coincide with the total spin of the state. The situation is a bit different for massless states
with P 2 = 0. There is no rest frame now, and the only two finite dimensional representations
(after fixing the momentum) are characterized by the helicity, corresponding to the direction
of the spin relative to the momentum.2

1.2 Fun with Fermions

To build supersymmetric theories, we will make extensive use of fields transforming in the
(1/2, 0) and (0, 1/2) representations of the Lorentz subgroup of Poincaré. These are often
called two-component or Weyl fermions, and chances are they are less familiar to you than
four-component Dirac fermions. For this reason, let us review a few important points about
them. More details can be found in Refs. [6].

The general form of the (1/2, 0) representation matrix is

M(αa) = = e−iαaσa/2 , (9)

where αa = (θa−iβa). The 2×2 matrixM(α) looks just like a regular SU(2) transformation,
but now with a set of three complex parameters. The real part of αa corresponds to a rotation

2There are also infinite-dimensional representations that have not been observed [7].
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about the a-th spatial axis, and the imaginary part corresponds to a boost in the a-th spatial
direction.

The Lorentz transformation of a (1/2, 0) spinor field ψα is therefore

ψα(x) → [M(αa)] β
α ψβ(Λ

−1x) , (10)

where α, β = 1, 2. The use of Greek indices to label the components of the spinor ψα is
traditional but unfortunate – make sure you don’t confuse them with 4-vector indices.

Given the form of M(αa), we can build a Lorentz-invariant bilinear operator using the ǫ
trick:

M t(αa)ǫM(αa) = ǫ . (11)

This implies that given any two (1/2, 0) spinors ψ and χ, the combination [χtǫψ] is Lorentz-
invariant. Putting in indices,

[χtǫψ] = χβǫ
βαψα = −(ǫαβχβ)ψα . (12)

For this reason, it is standard to define a spinor with a raised index,

χα := ǫαβχβ . (13)

In terms of this, the Lorentz-invariant bilinear is written as

χψ := χαψα . (14)

We would also like to be able to lower the spinor index. Using ǫǭ = 1, it follows that we can
do this with ǭαβ :

ψα = ǭαβψ
β . (15)

The bar on ǭ is usually not written explicitly. Instead, the standard notation has ǫαβ

antisymmetric with ǫ12 = +1, and ǫαβ also antisymmetric with ǫ12 = −1. Thus, ǫαλǫλβ = δαβ.

The (0, 1/2) representation is very similar in form to the (1/2, 0), with a general trans-
formation A general finite element is therefore

M(αa) = e−i(θa+iβa)σa/2 (16)

= e−i(αa)∗σa/2 , (17)

where θa and βa are exactly the same way as before.

Given the similarity of this form to the (1/2, 0) rep, we will use a peculiar but ultimately
useful notation for the indices of a (0, 1/2) spinor ψ̄(x) (where the bar on the field is part of
its name, not some sort of conjugation operation):

ψ̄(x) → [M(αa)]α̇
β̇
ψ̄β̇(Λ−1x) , (18)
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where the indices α̇, β̇ = 1, 2. With this transformation law, we can immediately form a
Lorentz-invariant bilinear operator from a pair of (0, 1/2) spinors χ̄ and ψ̄ using our ǫ trick :

χ̄ψ̄ := χ̄α̇ψ̄
α̇ = (ǫα̇β̇χ̄

β̇)ψ̄α̇ , (19)

where ǫα̇β̇ corresponds to the matrix ǭ. Similarly, we can raise indices using ǫα̇β̇,

χ̄α̇ = ǫα̇β̇χ̄β̇ . (20)

The components of ǫα̇β̇ are equal to those of ǫαβ , and the same for ǫα̇β̇ and ǫαβ .

The notation we are using looks funny, but there is a good reason for it. Consider the
transformation property of the (1/2, 0) spinor ψ with a raised index,

ψα → ǫαλ[M(αa)] β
λ ψβ (21)

= ǫαλ[M(αa)] β
λ ǫβκψ

κ (22)

=
[
e+iαa(σa)t/2

]α
κ
ψκ , (23)

where we have arranged the index structure of the last matrix to make it consistent. Com-
paring Eq. (23) to the transformation of Eq. (17), we see that (ψα)∗ transforms in exactly
the same way under Lorentz as a (0, 1/2) spinor!

Given a (1/2, 0) spinor ψα, we can therefore construct a (0, 1/2) spinor ψ̄α̇ by

ψ̄α̇ := ǫα̇β̇(ψ∗)β̇ , (24)

where we have written (ψ∗)β̇ = (ψβ)
∗. Similarly, given a (0, 1/2) spinor χ̄α̇, we can form a

(1/2, 0) spinor through

χα := ǫαβ(χ̄
∗)β . (25)

Thanks to these handy relations, we only really ever need to deal with (1/2, 0) spinors.

For our next trick, let us try to connect the (1/2, 1/2) rep with the 4-vector rep. To do
so, let us define the set of four 2× 2 matrices σµ (µ = 0, 1, 2, 3) by

σµ
αα̇ = (I, ~σ)αα̇ . (26)

With this, we can form the object

ψσµχ̄ := ψασµ
αα̇χ̄

α̇ . (27)

Under Lorentz, we have

ψασµ
αα̇χ̄

α̇ → ǫαλ(M β
λ ψβ)σ

µ
αα̇(M

α̇

β̇ χ̄
β̇) (28)

= −ψβ [M
tǫσµM ]β

β̇
χ̄β̇ (29)
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With some work, it can be shown that

[M tǫσµM ]β
β̇
= ǫβλΛµ

νσ
ν
λβ̇
, (30)

where Λ is the corresponding 4-vector transformation. It follows that under Lorentz

ψσµχ̄→ Λµ
ν ψσ

νχ̄ , (31)

which transforms like a 4-vector. This justifies our notation for the upper index on σµ, and
it also shows how the 4-vector rep emerges from the (1/2, 1/2) rep.

Let us also define

(σ̄µ)α̇α = (I,−~σ)α̇α . (32)

Following the same steps as before, one can show that for any (1/2, 0) and (0, 1/2) spinors
ψ and χ̄,

χ̄σ̄νψ := χ̄α̇(σ̄
µ)α̇αψα (33)

→ Λµ
ν χ̄σ̄

νψ . (34)

Numerically, one also has

(σ̄µ)α̇α = ǫα̇β̇ǫαβσµ

ββ̇
. (35)

This relation means that the spinor indices on σ̄µ are consistent with raising and lowering
with our good friend ǫ.

The σµ matrices also satisfy two very useful relations. The first follows from the trace-
lessness of the Pauli matrices, and reads

tr(σ̄µσν) = (σ̄µ)α̇ασν
αα̇ = 2ηµν . (36)

The second relation is

σµ
αα̇ (σµ)ββ̇ = −2ǫαβ ǫα̇β̇ . (37)

With all that spinor technology out of the way, we are now able to put together Lorentz-
invariant Lagrangians for spinor fields. In doing so, however, there are two additional
conditions. First, to describe a physical system, the action must be real. Since a spinor
ψ is an inherently complex object, we must therefore have ψ̄ = ǫψ∗ in our theory as well.
Second, when we quantize later on we will find that spinors describe fermions. It turns out
that for the quantum theory to connect in a reasonable way to a classical theory, the spinors
must anticommute with each other (even in the classical theory). In particular,

ψαχβ = −χβψα, ψαχ̄β̇ = −χ̄β̇ψα . (38)

In fancy math language, spinors are said to be Grassmann variables.
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For future use, it will be useful to have an explicit convention for the complex conjugation
of multiple classical fields, whether they be bosonic (and commuting) or fermionic (and
anticommuting). For either field type, we define for a single field

A† := A∗ , (39)

as well as

(A1A2 . . . An)
∗ := (A1A2 . . . An)

† := A†
n . . . A

†
2A

†
1 . (40)

Note that we have reversed the order with no additional signs, even for the fermion case.
This convention is useful because it will match smoothly with the operation of Hermitian
conjugation in the quantum theory, where we promote the fields to operators on a Hilbert
space. Note as well that

(χξ)† = (ǫαβχβξα)
† = ǫα̇β̇ ξ̄α̇χ̄β̇ = +ξ̄χ̄ . (41)

At the very least, a sensible physical theory requires a kinetic term involving some
spacetime derivatives. It turns out that the right form for a spinor is

L ⊃ 1

2
ψiσµ∂µψ̄ +

1

2
ψ̄iσ̄µ∂µψ (42)

= ψ̄iσ̄µ∂µψ = ψiσµ∂µψ̄ (43)

where you will verify the reality of the first line and the equalities in the second line in the
homework.

We can also add a bilinear mass term for the spinor. If we only have a single spinor ψ
(and its conjugate ψ̄), the only Lorentz-invariant possibility is

L ⊃ −1

2
mψψ − 1

2
m∗ψ̄ψ̄ . (44)

You might worry that these terms both vanish since ψ is anticommuting, but they do not.
Note that

χψ = χαψα = ǫαβχβψα = −ǫαβψαχβ = ǫβαψαχβ = ψβχβ = ψχ , (45)

where we see that the anticommutation of the spinors is cancelled by the antisymmetry of ǫ.

Having spent all that time on two-component (1/2, 0) and (0, 1/2) spinors, we turn next
to study four-component objects in the (1/2, 0)⊕ (0, 1/2) representation. While the rep is
reducible under Lorentz, it is irreducible if we also impose parity which exchanges jA and jB
in (jA, jB). Parity turns out to be a good symmetry of electromagnetism, and therefore we
would like to build it into our fields. This is why we’ll use four-component Dirac fermions
to describe electrons in QED.

Consider a theory containing two (1/2, 0) spinors ξ and χ together with their conjugates.
We will assume the theory has a global symmetry under the phase transformations

ξ(x) → e−iϕψ(x), χ(x) → eiϕχ(x) . (46)
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The most general Lagrangian for this theory at bilinear order is

L = ξ̄iσ̄µ∂µξ + χ̄iσ̄µ∂µχ−m(ξχ+ ξ̄χ̄) . (47)

The global symmetry allows the mixed χξ quadratic term, but it forbids χχ and ξξ.

When we quantize the theory, we will interpret m as the mass of a particle. However,
since two fields are involved, it is not obvious how to relate the mass term to a specific
particle. Using a four-component spinor containing both two-component spinors allows us
to dodge this issue for the time being. We define the four-component Dirac spinor Ψ by

Ψ =

(
ξα
χ̄α̇

)
. (48)

The conjugate of Ψ is thus

Ψ† =
(
ξ̄α̇, χ

α
)
. (49)

To go along with Ψ, we also generalize the σµ matrices to the 4× 4 Dirac matrices γµ,

γµ =

(
0 σµ

σ̄µ 0

)
, (50)

where each of the matrix elements is itself a 2 × 2 matrix. Finally, let us define the barred
conjugate Ψ̄ to be

Ψ̄ = Ψ†γ0 =
(
χα, ξ̄α̇

)
. (51)

Note that here the bar denotes a conjugation operation, and is not part of the name of the
Dirac spinor.

With these definitions in hand, we can rewrite the Lagrangian of Eq. (47) in a more
compact form using Ψ. The result is

L = Ψ̄iγµ∂µΨ−mΨ̄Ψ . (52)

The mass term looks much nicer now.

1.3 Extending Poincaré with Supersymmetry

Starting from Poincaré invariance, a natural question to ask is whether it can be extended
in any reasonable way. The answer, it turns out, is almost no. This follows from the
Coleman-Mandula theorem, which states that for a reasonable quantum field theory in
four dimensions to have particles of non-zero mass and a non-trivial S-matrix, all bosonic
symmetry generators (other than the Poincaré generators) must be Lorentz scalars [8].
Supersymmetry is a mild loophole in this argument because it is based on fermionic symmetry
generators (in a sense that we will discuss below). In fact, it can be shown to be the largest
possible exception [9, 10].
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The generators of supersymmetric transformations in four dimensions are Weyl ((1/2,0)

and (0,1/2)) fermions QA
α and Q

β̇

B, where A, B = 1, . . . ,N count the number N of inde-
pendent supersymmetries. Instead of satisfying the commutation relations of a Lie algebra,
they obey a Lie superalgebra involving both commutators and anti-commutators [3, 10]:

{QA
α , Qβ̇ B} = 2σµ

αβ̇
Pµδ

A
B (53)

{QA
α , Q

B
β } = 0 = {Qα̇

A, Q
β̇

B} (54)
[
Pµ, Q

A
α

]
= 0 = [Pµ, Q

β̇

B] . (55)

There are also commutators with the Lorentz generators Jµν , but they are pretty compli-
cated. In this course we will mostly restrict ourselves to one set of supersymmetry generators,
N = 1. With more generators, it is not possible to get representations with chiral fermions,
so the N = 1 case seems the most relevant.

As with Poincaré, we will build theories using fields and states that transform linearly
under supersymmetry. The fields and states in each representation can be organized into
supermultiplets that transform into each other under SUSY. Using the SUSY superalgebra,
we can deduce a few general results about these supermultiplets [1, 10]:

1. Any gauge or global symmetry generators of the theory must commute with the SUSY
and Poincaré generators (up to a possible U(1)R global symmetry). Thus, all the
members of a supermultiplet must have the same charges.

2. The operator P 2 commutes with all the other generators. Applying this in the rest
frame of the one-particle space, this means that all the particles in a supermultiplet
must have the same mass.

3. The number of bosonic and fermionic degrees of freedom (on- or off-shell) is equal
within any supermultiplet.

4. Invariance under supersymmetry implies that Qα annihilates the vacuum, Qα |0〉 = 0.

Applied to the vacuum (which has ~P = 0), we also have

{Qα, Qβ̇} = 2δαβ̇P
0 = 2δαβ̇H . (56)

Thus, H |0〉 = 0; the vacuum energy of a supersymmetric theory vanishes.

In general, we have

Q |boson〉 ∼ |fermion〉 , Q |fermion〉 ∼ |boson〉 (57)

Infinitesimal transformations on fields take the form

δφ ∼ ξψ, δψ ∼ σµξ̄∂µφ , (58)

where ξ is a fermionic (Grassmann-valued) transformation parameter. Note that this pa-
rameter must be fermionic so that the transformation of a boson remains bosonic and the
transformation of a fermion remains fermionic.
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1.4 Supersymmetric Actions

We would like to extend the SM to include supersymmetry. For this, we need to find
representations of supersymmetry on quantum fields, and to then put these representations
together in a way that gives a sensible action with which to define a theory. For now,
we will simply state the main results of this procedure. If there is time, we will come
back later in Section 4 to give some of the underlying details. The two (N = 1, d = 4)
representations of SUSY we will need to supersymmetrize the SM are the chiral and massless
vector supermultiplets. Let us describe both in turn.

A chiral supermultiplet Φ consists of a complex scalar φ, a Weyl fermion ψ, and an
auxilliary complex scalar F ,

Φ = (φ, ψ, F ) . (59)

The minimal supersymmetric action for these fields has only kinetic terms, and takes the
form

S =

∫
d4x

(
|∂φ|2 + ψ̄iσ̄ ·∂ψ + F †F

)
. (60)

The first two terms are just the usual kinetic pieces for a complex scalar and a Weyl fermion.
The third term involving F has no derivatives, and implies that the field is non-dynamical.
This means that it can be replaced by its equation of motion and does not correspond to
a physical degree of freedom. Note that the number of bosonic and fermionic degrees of
freedom (DOF) match up. Counting at the field level, before applying the equations of
motion, we have two real bosonic DOFs from φ and two from F , while ψ provides four real
fermionic DOFs to match. After applying the equations of motion, φ represents a spinless
particle and antiparticle giving two on-shell DOFs, while ψ represents a Weyl fermion and
its antiparticle each with a single helicity state. We also see that both states are massless.

Interactions can be added to the action while preserving invariance under SUSY provided
they come from a superpotential. A superpotentialW (Φ) is a function of the chiral superfield
Φ that is holomorphic, meaning that it depends on Φ alone and not Φ†. In terms of the
superpotential, the interaction terms in the Lagrangian are

Lint = − 1

2

∂2W

∂Φ2

∣∣∣∣
φ

ψψ + F
∂W

∂Φ

∣∣∣∣
φ

+ (h.c.) , (61)

where W (Φ) is to be evaluated at Φ → φ in all terms. The second term above involves the
auxilliary field F . Together with the kinetic terms in Eq. (60), the equation of motion for F
becomes

F † = − ∂W

∂Φ

∣∣∣∣
φ

(62)

Plugging back in, we get the first two kinetic terms in Eq. (60) as well as the interaction
terms

Lint = − 1

2

[
∂2W

∂Φ2

∣∣∣∣
φ

ψψ + (h.c.)

]
−

∣∣∣∣
∂W

∂Φ

∣∣∣∣
2

φ

(63)
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The first term gives Yukawa interactions while the second is the F -term potential for the
scalar. Note that the scalar potential is non-negative.

e.g. 1. The Wess-Zumino Model

The most general renormalizable superpotential with only a single chiral multiplet is

W =
1

2
mΦ2 +

λ

3!
Φ3 . (64)

Using our prescription above, this gives the mass and interaction terms

−L ⊃ |mφ+ λφ2/2|2 + (m+ λφ)ψψ + (h.c.) (65)

This implies that the scalar and fermion masses are both equal to m, and that the scalar
cubic and quartic interactions are directly related to the Yukawa coupling λ. These
nont-trivial relations are encoded in the superpotential and are necessary to preserve SUSY.

The massless vector supermultiplet V consists of a vector field Aµ, a Weyl fermion λ and
its conjugate λ̄, and a real auxilliary field D,

V = (λ,Aµ, D) . (66)

The minimal supersymmetric action for them is

S =

∫
d4x

(
λ̄iσ̄ ·∂λ− 1

4
FµνF

µν +
1

2
D2

)
, (67)

where Fµν = ∂µAν − ∂νAµ. This theory clearly has a U(1) gauge invariance with λ and D
uncharged. The fermionic superpartner λ of the vector boson is often called the gaugino.
Like the F terms above, the auxilliary D field has no kinetic terms and it is non-dynamical.

It is straightforward to generalize the vector multiplet and the corresponding action to a
non-Abelian gauge invariance. In this case, the vector field Ga

µ transforms under the adjoint
representation of the non-Abelian gauge group. (Recall that the adjoint of a U(1) group
is trivial.) To maintain SUSY, the other elements of the supermultiplet, λa and Da, must
also transform under the adjoint representation. The corresponding supersymmetric and
gauge-invariant minimal action is

S =

∫ (
λ̄aiσ̄ ·Dλa − 1

4
Ga

µνG
µν a +

1

2
DaDa

)
, (68)

where a is the adjoint index and

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfabcGb

µG
c
ν (69)

Dµλ
a = ∂µλ

a − gfabcGb
µλ

c , (70)

where fabc are the structure constants of the gauge group and g is the gauge coupling.
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The next step is to couple matter fields in chiral multiplets to a vector multiplet. Let G
be the non-Abelian gauge group, and taij the generators of the representation under which
Φ transforms. The kinetic terms for the vector multiplet remain the same as in Eq. (67),
while the kinetic terms for the chiral multiplet Φ take the same form as Eq. (60) but with
ordinary derivatives replaced by gauge-covaraint derivatives, ∂µ → Dµ where

[Dµφ]i = ∂µφi + igtaijG
a
µφj , (71)

and similarly for ψ. Supersymmetry also requires additional interaction terms to maintain
invariance. These are

−L ⊃
√
2g(φ†taψ)λa +

√
2gλ̄a(ψ̄taφ)− g(φ†taφ)Da . (72)

At this point, it is helpful to integrate out the D terms by replacing them by their algebraic
equations of motion. These are

Da = g(φ†taφ) . (73)

Plugging back in to the action, we find an additional contribution to the scalar potential,

−L ⊃ 1

2
DaDa =

1

2
g2(φ†taφ)2 (74)

Just like the F -term potential, this D-term potential is positive semi-definite.

e.g. 2. SUSY QED

Regular QED consists of a Dirac electron field coupled to the photon field with a U(1)em
gauge invariance. The supersymmetrization of it requires two chiral electron multiplets
E = (Ẽ, E, FE) and E

c = (Ẽc, Ec, FEc) with charges Q = ∓1 and an Abelian vector
multiplet V = (λ,Aµ, D). The new degrees of freedom required by SUSY are therefore a
pair of complex scalar selectrons and a U(1) gaugino fermion. Gauge invariance and
supersymmetry fix all the interactions among these fields up to the superpotential, whose
most general renormalizable form is

W = mEEc . (75)

This is nothing but a mass term for the selectrons and electrons. It gives

−L ⊃ m2
(
|Ẽ|2 + |Ẽc|2

)
+mEEc +mĒĒc . (76)

There is also a D-term contribution to the scalar potential. The full expression is 3

V = VF + VD (77)

= m2
(
|Ẽ|2 + |Ẽc|2

)
+
e2

2

(
|E|2 − |Ec|2

)2
. (78)

This potential is clearly minimized for |E| = |Ec| = 0. However, for m→ 0 the F -terms

vanish and there is a much larger space of vacua defined by |Ẽ| = |Ẽc|. This corresponds to
D = 0 and is called a D-flat direction.

3Note that ta → Q for Abelian theories.
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1.5 (Soft) Supersymmetry Breaking

One of the predictions of exact supersymmetry is that the masses of all the states within
a supermultiplet are the same. This is a problem for any supersymmetric extension of the
SM because we are extremely certain that there is no scalar electron superpartner with the
same mass as the electron. Thus, if we are to supersymmetrize the SM, SUSY cannot be
an exact symmetry of Nature. At the same time, we would very much like to keep the very
nice solution to the electroweak hierarchy problem that SUSY provides.

Both features can be achieved if SUSY is only broken softly. This means that all the
operators in the effective Lagrangian that are not invariant under SUSY are accompanied
by a factor with positive mass dimension, msoft. The mass splittings between particles and
their superpartners will be determined by this factor. Moreover, at energies E ≫ msoft

the effects of soft supersymmetry breaking become subleading corrections, and the theory
becomes increasingly close to being exactly supersymmetric.

The most general set of (renormalizable) soft supersymmetry breaking terms for a chiral
supermultiplet Φ = (φ, ψ, F ) and a vector supermultiplet V = (λa, Ga

µ, D
a) are

−Lsoft = m2
φ|φ|2 +

(
tφ+ bφ2 + aφ3 + cφ2φ∗ + h.c.

)
+ (Mλ λ

aλa + h.c.) . (79)

All of the parameters are assumed to on the order of mn
soft. The last term is a gauge-

invariant mass for the gaugino, allowing it to be heavier than the massless vector boson.
The terms involving the chiral multiplet shift the mass of the scalar relative to the fermion
and introduce new contributions to the scalar potential.

Going back to our earlier discussion of the hierarchy problem, we can apply the previous
result to a softly-broken supersymmetric theory. Suppose Ψ is a fermion from a chiral
multiplet and Ψ̃ is its scalar superpartner. Soft SUSY breaking will modify the mass of the
scalar relative to the fermion by roughly M2

Ψ̃
≃MΨ+m2

soft, but it will not significantly alter
the relative size of the dimensionless coupling to the Higgs yΨ. With these changes from
SUSY breaking, the net correction to the quadratic Higgs parameter of Eq. (1) is

∆µ2 ≃ y2Ψ
(4π)2

m2
soft . (80)

We see that the cancellation needed to stabilize the electroweak scale is preserved with
softly broken SUSY provided msoft . (4π/yΨ)µ. This works even if the supersymmetric
contribution to the mass MΨ is much larger than the weak scale.

2 Supersymmetrizing the Standard Model

We now have everything we need to embed the SM in a supersymmetric theory. In this section
we will present the minimal supersymmetric extension of the SM (MSSM) and discuss some
of its features. implications.

13



SU(3)c × SU(2)L × U(1)Y Fermions Bosons B L R

Q =

(
UL

DL

)
(3, 2, 1/6) uL, dL ũL, d̃L 1/3 0 -1

U c (3̄, 1, -2/3) U c = u†R Ũ c = ũ∗R -1/3 0 -1

Dc (3̄, 1, 1/3) Dc = d†R D̃c = d̃∗R -1/3 0 -1

L =

(
νL
eL

)
(1, 2, -1/2) νL, eL ν̃L, ẽL 0 1 -1

Ec (1, 1, 1) Ec = e†R Ẽc = ẽ∗R 0 -1 -1

Hu =

(
H+

u

H0
u

)
(1, 2, 1/2) h̃+u , h̃

0
u H+

u , H
0
u 0 0 +1

Hd =

(
H0

d

H−
d

)
(1, 2, -1/2) h̃0d, h̃

−
d H0

d , H
−
d 0 0 +1

Table 1: Chiral supermultiplets in the MSSM.

SU(3)c × SU(2)L × U(1)Y Fermions Bosons B L R

Ga (8, 1, 0) g̃a gaµ 0 0 -1

W d (1, 3, 0) W̃ d W d
µ 0 0 -1

B (1, 1, 0) B̃0 Bµ 0 0 -1

Table 2: Vector supermultiplets in the MSSM.

2.1 Fields and Interactions

In the minimal supersymmetric extension of the Standard Model (MSSM), all the SM
fermions are embedded in chiral multiplets and each of the SU(3)c×SU(2)L×U(1)Y vector
bosons is embedded in vector multiplet. These multiplets are listed in Tables 1 and 2. The
superpartners of the SM fermions have s = 0 and are called sfermions while the superpartners
of the vector bosons have s = 1/2 and are called gauginos. For the Higgs, two chiral SU(2)L
doublets are needed, with the minimal MSSM configuration involving Hu and Hd shown in
Fig. 1. The s = 1/2 fermionic superpartners of the Higgs scalars are called higgsinos.

There are two reasons why at least two SU(2)L doublet chiral superfields are necessary.
The first is that the SM Yukawa couplings emerge from superpotential interactions. One
Higgs can supply these for both up- and down-type fermions in the SM since the Higgs can be
conjugated in the Yukawa-interaction operators. This is not possible in the superpotential
because of holomorphy. The second reason for at least two Higgs multiplets comes from
their chiral fermion components; with only a single Higgs multiplet there would be gauge
anomalies in SU(2)L and U(1)Y .

With the the chiral multiplets listed in Table 1, the following superpotential couplings
are consistent with gauge invariance and are included in the MSSM:

W = µHu ·Hd + yuQ·HuU
c − ydQ·HdD

c − ye L·HdE
c , (81)

14



where A ·B = Aaǫ
abBb is a contraction of SU(2)L indices with ǫ12 = +1 = −ǫ21, and we

have suppressed sums over flavour (generation) indices. The first term gives a mass to
the higgsinos, while the other terms reproduce the Yukawa couplings of the SM. Note that
holomorphy implies that two Higgs multiplets are needed to get all the Yukawas.

The MSSM superpotential interactions in Eq. (81) do not contain all the possible (renor-
malizable) operators consistent with gauge invariance. The renormalizable gauge-invariant
operators that were not included are

L·Hu , U cDcDc , Q·LDc , L·LEc . (82)

All of these violate baryon (B) or lepton (L) number, and are inconsistent with experiment
unless they are accompanied by extremely small couplings [13]. In the MSSM, these operators
are forbidden by imposing an additional symmetry called R-parity on the multiplets. This
is a Z2 symmetry under which the lowest-spin element in the supermultiplet with spin s0 is
assigned the parity R = ±1, with the R-parity of the higher-spin elements in the multiplet
given by R′ = R × (−1)2(s−s0). In the MSSM, all the SM-fermion chiral multiplets have
R = −1 implying that the sfermions are R-odd and the SM fermions are R-even. For the
gauge multiplets, the gauginos are R-odd and the vector bosons are R-even. For the Higgs
chiral multiplets, the Higgs scalars are R-even and the Higgsinos are R-odd. Equivalently,
the SM states are R-even and their superpartners are R-odd.

The imposition of R-parity has two important consequences. The first is that the
operators listed in Eq. (82) are all odd and thus forbidden by the symmetry. This can
also be seen by noting that the R-parity charges are equivalent to [1]

R = (−1)(3B−L+2s) . (83)

Two more implications of R-parity are that superpartners can only be created or destroyed
and pairs, and that the lightest superpartner is stable. These two features play a key role
in the phenomenology of the MSSM. In particular, the lightest superpartner (LSP) is stable
and will contribute to the density of dark matter.

Consistency with experiment also requires that the MSSM superpartners be heavier than
their SM counterparts. To achieve this, soft supersymmetry breaking must be added to the
theory. The complete set of soft supersymmetry breaking terms in the MSSM is [1]

−Lsoft = m2
Hd
|Hd|2 +m2

Hu
|Hu|2 − (BµHu ·Hd + h.c.)

+m2
Q |Q̃|2 +m2

U |Ũ c|2 +m2
D |D̃c|2 +m2

L |L̃|2 +m2
E |Ẽc|2

+
(
yuAu Q̃·Hu Ũ

c − ydAd Q̃·HdŨ
c − yeAe L̃·HdẼc + h.c.

)

+
1

2

(
M3 g̃

ag̃a +M2 W̃
dW̃ d +M1 B̃

0B̃0 + h.c.
)
. (84)

The first two lines in Eq. (84) contain mass terms for the Higgs and sfermion scalars, the
third line consists of trilinear A terms that mirror the superpotential couplings, and the
fourth line contains mass terms for the gauginos.

Together, supersymmetry, gauge invariance, the matter content listed in Tables 1 and 2,
the superpotential of Eq. (81), and the soft terms of Eq. (84) completely specify the MSSM.
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2.2 The MSSM Mass Spectrum

Particle masses in the MSSM are determined by the soft supersymmetry breaking terms and
electroweak symmetry breaking induced by the Higgs multiplets. The presence of electroweak
symmetry breaking will mix states from different chiral and vector supermultiplets to produce
the mass eigenstates that can be observed in experiments.

Let us begin with electroweak symmetry breaking [1, 11, 12]. For this, we should examine
the effective potential for the Higgs scalars derived from Hu and Hd and find their vacuum
expectation values (VEV) by minimization. These scalars have both charged (H+

u , H
−
d ) and

neutral (H0
u, H

0
d) components, but it can be shown that the (tree-level) potential is always

minimized with H+
u = H−

d = 0. This leaves a potential for the neutral components given by

VH = VF + VD + Vsoft (85)

= (m2
Hu

+ |µ|2)|H0
u|2 + (m2

Hd
+ |µ|2)|H0

d |2 − (BµH0
uH

0
d + h.c.)

+
g2 + g′2

8

(
|H0

u|2 − |H0
d |2

)2
.

The only term in this potential that depends on the phase of the Higgs scalars is the Bµ
piece. By rephasing the fields, we can assume that Bµ is real and positive without loss of
generality. The potential is then minimized with H0

u and H0
d both real and positive.4

Both H0
u and H0

d should get VEVs for electroweak symmetry breaking and to give masses
to both up- and down-type fermions, and these VEVs should be finite. This imposes two
necessary and sufficient conditions on the parameters:

(Bµ)2 > (m2
Hu

+ |µ|2)(m2
Hd

+ |µ|2) (86)

2(Bµ) < 2|µ|2 +m2
Hu

+m2
Hd

. (87)

The first condition comes from destabilizing the potential at the origin while the second
corresponds to a positive quadratic coefficient when the quartic term vanishes along the
D-flat direction |H0

u| = |H0
d |. As long as these conditions are met, both fields will get VEVs

and we can write

〈Hu〉 = vu = v sin β , 〈Hd〉 = vd = v cos β , (88)

where v =
√
v2u + v2d and β ∈ (0, π/2). To match experiment, we also want v ≃ 174 GeV.

The minimization conditions that determine vu and vd (at tree-level) are equivalent to

m2
Z =

m2
Hu

−m2
Hd

cos 2β
−m2

Hu
−m2

Hd
− 2|µ|2 , (89)

sin 2β =
2Bµ

m2
Hu

+m2
Hd

+ 2|µ|2 . (90)

After EWSB, one linear combination of H0
u and H0

d is eaten by the Z0 and a related
linear combination of H+

u and H−
d is eaten by the W±. The remaining physical excitations

4Setting H0
u real and positive can be arranged by a choice of gauge.

16



are a pair of neutral CP-even scalars h0 and H0, a neutral CP-odd scalar A0, and a complex
charged scalar H+. Their masses are

m2
h,H =

1

2

[
m2

Z +m2
A ∓

√
(m2

A −m2
Z)

2 + 4m2
Zm

2
A sin2 2β

]
(91)

m2
A =

2Bµ

sin 2β
= 2|µ|2 +m2

Hu
+m2

Hd
(92)

mH± = m2
A +m2

W . (93)

In the limit mZ ≪ mA with tanβ > 1, the lighter CP-even state h0 couples to the SM
fermions and vector bosons in the same way as the SM Higgs. This is often called the
decoupling limit.

The SM weak vector bosons and fermions also get masses from EWSB. The vector boson
masses are

m2
W =

g2

2
v2 , m2

Z =
g2 + g′2

2
v2 , (94)

where g′ and g are the U(1)Y and SU(2)L gauge couplings. Relative to the couplings in the
MSSM superpotential, the fermion masses are

mu = yuv sin β , md = ydv cos β , me = yev cos β . (95)

Note that the large value of the top mass (mt ≃ 174 GeV) favours tan β > 1. As tan β falls
below this, the top Yukawa coupling yt grows non-perturbatively large.

The superpartner mass spectrum is also modified by electroweak symmetry breaking.

Among the scalars, the f̃L and f̃R = f̃ c
∗
sfermion superpartners of the left- and right-handed

fermions of the SM mix with each other. This mixing is typically proportional to the SM
fermion mass, and is usually neglected except for the third generation. Thus, it is standard
to hear about ũL and ũR squarks of the first generation, and t̃1 and t̃2 of the third generation,
where the naming convention ismt̃1

≤ mt̃2
. More details can be found in Ref. [1] and Table 3.

The fermionic superpartners consist of the gauginos and the higgsinos. The SU(3)c
gaugino g̃ is called the gluino, and has a mass set by the soft term M3. The other fermion
superpartners mix with each other after electroweak symmetry breaking. The neutral Bino
B̃0 and Wino W̃ 0 gauginos combine with the neutral higgsinos H̃0

u and H̃0
d to make four

Majorana-fermion neutralinos χ0
i (with |mi| ≤ |mi+1|). Similarly, the charged gaugino W̃±

and higgsinos H̃+
u and H̃−

d combine to make two Dirac-fermion charginos χ±
i (with |mi| ≤

|mi+1|). Again, more details can found in Ref. [1] and the summary Table 3.

Table 3 also lists a gravitino. It is the spin s = 3/2 superpartner of the graviton. The
origin of its mass is more complicated, and we will discuss it in the next section in the context
of supersymmetry breaking.
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State Symbol SU(3)c Qem R

CP-even Higgs h0, H0 1 0 +1
CP-odd Higgs A0 1 0 +1
charged Higgs H± 1 ±1 +1

gluino g̃ 8 0 -1
neutralinos χ̃0

1, χ̃
0
2, χ̃

0
3, χ̃

0
4 1 0 -1

charginos χ±
1 , χ

±
2 1 ±1 -1

up squarks ũL,R, c̃L,R, t̃1,2 3 2/3 -1

down squarks d̃L,R, s̃L,R, b̃1,2 3 -1/3 -1
sleptons ẽL,R, µ̃L,R, τ̃1,2 1 -1 -1
sneutrinos ν̃e, ν̃µ, ν̃τ 1 0 -1

gravitino G̃ 1 0 -1

Table 3: Higgs and superpartner mass eigenstates in the MSSM after electroweak symmetry
breaking. In writing these out we assume that left-right scalar mixing is only significant
for the third generation. States are conventionally labelled in order of increasing mass:
mi ≤ mi+1.

2.3 Models of Supersymmetry Breaking

Supersymmetry breaking is needed to make the superpartners heavier than their SM counter-
parts. Indeed, given the current experimental bounds on superpartners, most of their mass
must come from SUSY breaking. In this subsection we will discuss some of the proposals for
the origin of this breaking, and what they imply for the mass spectrum of the MSSM.

Breaking supersymmetry is usually a messy business. The standard assumption is that
the breaking mechanism is spontaneous. As in non-supersymmetric theories, this occurs
when the underlying theory respects the symmetry but the vacuum state does not, corre-
sponding to Qα |0〉 6= 0 for at least one α. Now, using Eq. (56) we can deduce that for a
supersymmetric theory

4 〈0|H |0〉 = 〈0|
(
Q1Q1 +Q1Q1 +Q2Q2 +Q2Q2

)
|0〉 (96)

=
∣∣Q1 |0〉

∣∣2 + |Q1 |0〉|2 + (1 → 2)

This vanishes if the vacuum is supersymmetric, and is positive if it is not. Comparing to
our previous expressions for the F - and D-term scalar potentials, we see that F = D = 0
at the minimum is needed for supersymmetry, and F or D non-zero signals spontaneous
supersymmetry breaking.

It can be shown that the supertrace vanishes in a supersymmetric theory, whether or not
SUSY is sponteneously broken. This is defined to be [1]

Str(M2) :=
∑

b

gbm
2
b −

∑

f

gfm
2
f = 0 , (97)
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where the sums run over all the bosons (b) and fermions (f) in the theory, and gi is the
number of real degrees of freedom of state i. This relation presents an immediate problem
for trying to achieve supersymmetry breaking within the MSSM itself. Specifically, it implies
that the sum of superpartner masses should match up with the sum of SM masses. Given
that we have not yet seen any superpartners, we do not expect this be true.

Instead, the standard picture of supersymmetry breaking is that the spontaneous break-
down occurs in a new hidden sector that is very heavy and only interacts feebly with the
visible MSSM sector through a set of heavy messengers. When the heavy hidden and
messengers states are integrated out to produce a low-energy effective theory containing
the MSSM, soft supersymmetry breaking operators of the form of Eq. (79) are generated.
From the point of view of the effective theory, these soft terms appear as explicit breaking,
even though their origin is from spontaneous breaking. The supertrace sum rule now applies
to both the visible and hidden sectors together, and it is expected to be dominated by the
heavy hidden states.

The amount of supersymmetry breaking can be parametrized in terms of the non-zero
F - and D-terms of the hidden sector. This breaking is usually assumed to be dominated by
F -terms since D-terms alone will not generate standard gaugino masses. Let us take F to
correspond to the spontaneous breaking in the hidden sector, and M∗ to be the mass of the
messenger states. The typical size of the MSSM soft terms is then expected to be

msoft ∼ C∗

F

M∗

, (98)

where C∗ describes the strength of the connection between the visible and hidden sectors.
Specific models of supersymmetry breaking and its transmission to the MSSM make pre-
dictions for F , M∗, and C∗. The three most popular scenarios are gravity mediation, gauge
mediation, and anomaly mediation.

In gravity mediation, the hidden and visible sectors are assumed to be connected only
through new states related to quantum gravity with masses on the order of MPl. This gives
visible soft terms on the order of [14]

msoft ∼ F

MPl
. (99)

Without a specific theory of quantum gravity, it is not possible to say much more about the
values of the soft terms. However, a popular simplifying assumption (with limited theoretical
motivation) is called minimal supergravity (mSUGRA). In this scenario, the scalar and
fermion soft terms are taken to be universal at some high scale close to MGUT ∼ 10−2MPl

and given by

M1 = M2 = M3 = m1/2 (100)

m2
f̃

= m2
0 (101)

Af = A0 . (102)

To deduce the values near the weak scale relevant for phenomenological studies, they must be
extrapolated down using the renormalization group. This evolution tends to push the masses
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of the SU(3)c-charged superpartners above those of SU(3)c-neutral states. In particular, the
gaugino soft masses at low energy follow the pattern M3 :M2 :M1 ∼ g23 : g

2
2 : g

2
1 ∼ 6 : 2 : 1.

In gauge mediation, the source of supersymmetry breaking is assumed to couple directly
to a set of heavy messenger states that carry SM gauge charges [15]. Integrating the
messengers out at their mass threshold M∗, this produces

msoft ∼ g2

(4π)2
F

M∗

(103)

where g is a SM gauge coupling for the groups under which the relevant MSSM superpartners
are charged. For gauge mediation to dominate over gravity mediation we must have M∗ <
[(4π)2/g2]MPl.

A third popular mechanism of supersymmetry breaking is anomaly mediation [16, 17].
Here, the messengers are related to the gravity supermultiplet itself that contains the graviton
and the gravitino (to be discussed further below).5 The soft terms from anomaly mediation
go like

msoft ∼ g2

(4π)2
F

MPl

, (104)

where g is a SM gauge coupling for the groups under which the relevant MSSM superpartners
are charged. Note that these contributions are subleading compared to those from gravity
mediation. They can only dominate when the gravity-mediated pieces are suppressed, as can
occur if the source of supersymmetry breaking is very sequestered from the visible sector.
For example, the two sectors can be localized in different parts of an extra dimension [16].

There are two very important and related issues that we have not yet addressed: the
goldstino and the gravitino. Supersymmetry as we have presented it so far has been a global
symmetry of spacetime. In this case, the spontaneous breaking of supersymmetry implies
that there exists a massless goldstino fermion [1]. This is the analogue of the Nambu-
Goldstone boson that arises from the spontaneous breaking of a regular global symmetry,
but it is now fermionic since the symmetry generators (Q and Q) are as well. One can
also show that the goldstino couples to the rest of the light states in the theory through a
higher-dimensional operator that involves a derivative and is suppressed by 1/F .

This is not the whole story. In much the same way that we can extend the SM to include
gravity as an effective field theory, it is also possible to extend global supersymmetry to
include gravity as well [14]. For this, we must embed the s = 2 graviton in a supermultiplet,
and this leads to a gravitino superpartner with s = 3/2. The resulting theory is called su-

pergravity. The gravitino of supergravity has a very important implication for the goldstino.
To see this, we will have to make a brief aside.

Recall that regular gravity (GR) can be understood as a gauging of the global Poincaré
symmetries of flat spacetime to a local invariance under coordinate transformations. Since

5Note that “gravity mediation” typically does not rely on this gravity multiplet itself. Instead, the
messengers are new QG states with masses near MPl.
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global supersymmetry is an extension of Poincaré, supergravity can also be understood as a
gauging of global supersymmetry. In this context, the coordinate invariance of GR emerges
as a subgroup of the larger invariance under supergravity transformations. A necessary
component of supergravity is therefore the graviton and its gravitino superpartner.

When supersymmetry is spontaneously broken in the context of supergravity, the massless
goldstone does not appear on its own as a physical degree of freedom. Instead, it is eaten

by the would-be massless gravitino to form a massive s = 3/2 graviton. Note that the
counting of DOFs works out: a massless gravitino has two DOFs and the goldstino has two
as well; this matches the four DOFs of a massive s = 3/2 particle. The eating mechanism
in this case is again completely analogous to what happens when a regular gauge symmetry
is spontaneously broken.

The resulting gravitino mass m3/2 depends on all the sources of supersymmetry breaking
in the theory. If this breaking is dominated by a single F -term (and the vacuum energy
vanishes), the mass is

m3/2 =
F√
3MPl

. (105)

The gravitino G̃µ couples to SM particles and their superpartners according to the general
form [1]

−L ⊃ 1

MPl
(∂µf̃)fγ

µγνG̃ν +
i

8MPl
G̃µ[γ

ν , γρ]γµλFνρ + h.c. , (106)

where G̃µ is the graviton field, f is a SM fermion and f̃ is its sfermion superpartner, and Fνρ

is a vector boson field strength and λ is its gaugino superpartner. In some cases, however, the
effective strength of the gravitino coupling can be much larger than the gravitational 1/MPl

factors suggest. This occurs because the longitudinal components of the massive gravitino
come from the Goldstino, which couples to the SM and its superpartners with strength 1/F .
When computing matrix elements of gravitinos, these potentially enhanced coupling emerge
from gravitino polarization sums.6 For processes with characteristic energies E ≫ m3/2, this
effect can be handled by making the substitution [1]

G̃µ →
√

2/3 ∂µψ/m3/2 , (107)

where ψ represents the s = 1/2 Goldstino field. Note that m3/2MPl ∼ F , so this substitution
does indeed produce a factor of 1/F when inserted in Eq. (106). When E . m3/2 the full
expression of Eq. (106) should be used.

Measuring the mass spectrum of the MSSM superpartners and the gravitino would
provide information about the origin of supersymmetry breaking. In turn, this could tell
us about new physics at very high energies and might even inform us about the underlying
theory of quantum gravity. For these reasons, the discovery of supersymmetry would be a
major experimental and theoretical breakthrough.

6A similar thing happens when massive vector bosons interact at high energies. The vector polarization
sums give a factor of (−ηµν + pµpν/m

2

V ), and the second term in this expression can become numerically
large for E ≫ mV .
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3 Signals of Supersymmetry

We turn next to a give brief overview of the potential observational consequences of supersym-
metry. So far, we do not have any experimental evidence for the presence of superpartners.
However, the upcoming LHC run at energies approaching

√
s = 14 TeV will be able to probe

a much wider range of superpartner candidates than ever before. We will begin this section
with the various indirect constraints on the superpartner spectrum, and from there we will
work up to a discussion of direct searches for supersymmetry at high-energy colliders.

3.1 Dark Matter and the LSP

A great deal of the phenomenology of supersymmetry depends on the nature of the lightest
superpartner (LSP). Recall that with R-parity, this state is stable. For now, let us focus on
theories where R-parity is present. In such theories, the LSP will contribute to the density
of dark matter unless it is very light.

To be consistent with observations, a stable LSP must be electrically neutral. In the
MSSM, this leaves the neutralinos, the sneutrinos, and the gravitino as possible LSP can-
didates. Of these, the most promising candidate for dark matter is the lightest neutralino
χ0
1. If this state is a moderate mixture of the Bino (B̃0) with some Wino (W̃ 0) or higgsino

(H̃0
u,d), it can provide the observed DM relic density through thermal freeze-out [20] and be

consistent with direct and indirect searches for DM [18]. A sneutrino LSP does not work
as well because it has a relatively large weak interaction with SM matter (relative to the
neutralinos) and would very likely have already been observed in direct DM searches [19].

The situation for a gravitino LSP is more complicated. Comparing the gravitino mass
estimate of Eq. (105) to the soft mass scales of Eqs. (99,103,104) for various mediation
mechanisms, we see thatm3/2 ∼ msoft in gravity mediation,m3/2 < msoft in gauge mediation,
and m3/2 > msoft in anomaly mediation. A gravitino LSP can also make up the dark matter,
but a more complicated non-thermal cosmological history is needed [18].

The possibility of a gravitino LSP has received the most attention in the context of gauge
mediation. Here, the lightest SM superpartner X̃ is the next-to-lightest superpartner (NLSP)
and decays down to its SM counterpart and the gravitino. The corresponding decay rate is

Γ(X̃ → XG̃) ≃ 1

48π

m5
X̃

m2
3/2M

2
Pl

. (108)

Note that the lighter the gravitino, the more quickly it decays. In many models of gauge
mediation, the NLSP is either a mostly-Bino (B̃0) neutralino or a mostly right-handed stau

(τ̃R). These leads to the dominant decay channels χ̃0
1 → γG̃ or τ̃R → τG̃.
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3.2 Precision Tests

Many aspects of the SM have been studied to a very high precision. Such measurements
test the validity of the SM, and they have also been applied to search for indirect evidence
of new BSM physics. So far, no clear deviation from the SM has been observed, and this
places important constraints on many proposals for new physics.

The most constraining precision measurements for supersymmetry are tests of quark
flavour mixing and CP violation. The soft breaking terms of the MSSM can be a new source
of flavour mixing in addition to the CKM matrix. For example, the m2

Q|Q̃|2 term in Eq. (84)
is a shorthand for

−Lsoft ⊃ (m2
Q)ijQ̃

†
iQ̃j , (109)

where i, j = 1, 2, 3 are flavour (generation) indices. Non-diagonal or non-universal terms
among the first two generations in (m2

Q)ij or the A terms must be much smaller than the
diagonal terms to be consistent with experiment for soft terms near the weak scale. If the soft
terms are completely anarchic in flavour space, with no particular underlying structure, the
superpartners must be heavier than nearly 106 GeV to agree with observation [21]. Similar
constraints can be derived for new sources of CP violation coming from phases in the A and
B terms and the gaugino masses.

These bounds have important implications for the mechanisms of supersymmetry break-
ing and mediation [1, 2]. Specifically, to have superpartners near the weak scale to provide
a full explanation for the hierarchy problem, the flavour mixing and CP violation in the
soft terms must be very small. It turns out that both gauge and anomaly mediation give
diagonal and universal soft terms in their most minimal forms. Gravity mediation does not
guarantee this, and may require some additional flavour structure to be viable.

3.3 Higgs Physics and Fine Tuning

The recent LHC discovery of a SM-like Higgs boson with mass near mh ≃ 125 GeV is very
significant for the MSSM and other supersymmetric extensions of the SM [22, 23]. A SM-like
Higgs with a mass this large is challenging to obtain in the MSSM, and it implies that the
theory has some degree of fine tuning. While this tuning is much less than the hierarchy
problem without supersymmetry, it is also unwelcome in a theory that was motivated by its
ability to remove fine tuning in the first place.

The two MSSM states that could be potentially identified with the observed Higgs boson
are h0 and H0. Given the lack of evidence for a new scalar lighter than the Higgs, the more
likely candidate of these two is the h0 state. This particle couples to the SM in the same
way as a SM Higgs boson in the decoupling of limit mA ≫ mZ . The challenging part of
connecting h0 to the SM Higgs is the bound on its mass derived from the tree-level potential
(Eq. (91)):

m2
h ≤ m2

Z cos2 2β ≤ m2
Z . (110)
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With mZ = 91.2 GeV, this is clearly less than the observed Higgs mass. The first inequality
is saturated in the decoupling limit.

Fortunately, loop corrections can push the mass of h0 up to and beyond 125 GeV. The
most important contribution comes from the scalar top superpartners (stops). In the absence
of left-right stop mixing and in the decoupling limit, it is given at one-loop by

∆m2
h =

12

(4π)2
m2

t y
2
t sin

2 β ln

(
mt̃L

mt̃R

m2
t

)
. (111)

A modest additional enhancement can be obtained with stop mixing. These corrections can
push the h0 mass up to the observed value for mt̃L,R

& 1.5 TeV and tan β & 10.

Obtaining this enhancement comes at the cost of some fine tuning. For larger tanβ in
the decoupling limit, the minimization condition for the Higgs potential of Eq. (89) can be
written as

m2
Z ≃ −2|µ|2 − 2m2

Hu
. (112)

The two terms on the right side seem to have very different origins; µ is supersymmetric
while m2

Hu
comes from supersymmetry breaking. This suggests that they do not have a good

reason to cancel, and that that neither should be much larger than m2
Z . On the other hand,

the relatively heavy stops needed to push up the h0 mass also generate a large quantum
correction to m2

Hu
,

∆m2
Hu

≃ −12
y2t

(4π)2
m2

t̃
ln

(
M∗

mt̃

)
, (113)

where mt̃ ∼ √
mt̃L

mt̃R
and M∗ is the messenger scale. Taken together, the heavy stops

needed to push up the Higgs mass also increase |m2
Hu

| above the weak scale, and this implies
a seemingly tuned cancellation against |µ|2, at the level of a few percent, to satisfy Eq. (112).
This situation can be improved slightly by extending the Higgs sector of the MSSM, but not
by much. Note as well that this expression shows how the hiearchy problem reappears as
the soft masses are taken to be very large [24].

3.4 Collider Searches

Our best hope of discovering supersymmetry in the near future is the upcoming 14 TeV run
of the LHC, set to begin in May, 2015. This run will collide beams of protons at higher
energies than ever before, and is scheduled to collect an enormous amount of data. It is
expected to be able to discover superpartners with masses up to about 3 TeV.

Superpartner production at the LHC is greatest for the gluino and the squarks of the
first generation, as shown in Fig. 1. These can proceed through the strong interaction with
up- and down-quarks (derived from the colliding protons) in the initial states. The next
largest production rates are for the squarks of the second and third generations, which also
go by the strong force. The production of states that are uncharged under SU(3)c, such as
charginos, neutralinos, and sleptons, tends to be much smaller.
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Figure 1: Superpartner production cross sections in picobarns (pb) at the 14 TeV LHC
obtained computed with Prospino [25].
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Figure 2: Creation of a pair of gluinos in a pp collision followed by their cascade decays down
to a neutralino LSP.

With R-parity, superpartners are always produced in pairs. Each superpartner will then
decay down to a lighter superpartner and one or more SM states. These decays continue
until the LSP is reached. If the LSP is neutral and uncoloured, as motivated by dark matter
and cosmology, it will quit the detectors without leaving a signal [26]. An example of such a
cascade decay chain is shown in Fig. 2, which depicts the pair production of a pair of gluons
followed by their cascade decays down to a neutralino LSP.

Despite not producing a direct signal in particle detectors, the presence of one or more
LSPs in a collider event can still be deduced through momentum conservation. Since the
LSPs carry off some of the momentum from the event, they can induce an imbalance in the
net momentum of the visible particles in the event. The missing transverse momentum in a
collider event is defined to be

/~pT = −
∑

i∈visible

~pTi
(114)

Here, transverse means the component in the plane orthogonal to the beam axis. Note that
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Figure 3: Limits on squarks and gluinos from ATLAS LHC searches for jets and missing
energy, for Ref. [27].

it is usually not possible to apply momentum conservation along the beam axis because the
initial momenta of the colliding partons (quarks or gluons within the incoming protons) is
not known. The magnitude of the missing transverse momentum vector is typically called
the missing energy /ET or MET.

The strongest collider constraints on superpartner masses come from searches for jets
and missing energy and apply to squarks and gluinos. In Fig. 3 we show the limits from
the ATLAS experiment at the LHC using searches based on about 20 fb−1 of data taken at√
s = 8, TeV [27]. The specific limits depend on how the squarks and gluinos decay and the

mass of the LSP (assumed to be a neutralino here), but they can extend up to superpartner
masses of nearly 2 TeV. The LHC limits on squarks of the third generation of considerably
weaker, but still go up to nearly 700 GeV.

4 Supersymmetry in More Detail
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