
PSI BSM Homework #2

1. Linear and Non-Linear Sigma Models

Consider a theory of four real scalars written in terms of a complex (2×2) matrix-valued
field S of the form

S = σ(x)I/2 + iαa(x)ta,

where I is the (2× 2) unit matrix, ta = σa/2 (a ≥ 1), and σ, αa are real scalars. Take
the Lagrangian to be

L = tr(∂µS
†∂µS)−

λ

2

[

tr(S†S)− v2/2
]2
.

This renormalizable theory is an example of a linear sigma model.

a) Show that this theory has a global SU(2)L × SU(2)R symmetry under which the
matrix field transforms as S → S ′ = LSR†.

b) Show that one of the global minima of the potential is

〈S〉 = (v/2) I .

What fraction of the original symmetry does this spontaneously break? How
many NGBs will there be?

c) Let us choose to expand around this “identity” vacuum state. One way to do so
is write

S(x) = [v + h(x)]/2 + iαa(x)ta .

Check that the kinetic terms are canonical and find the masses of these fields.

d) Another way to expand around the vacuum is to write

S(x) =
1

2
[v +H(x)] exp[2iπa(x)ta/f ] ,

for some f with mass dimension one. The exponential term can be thought of as a
general transformation on the identity vacuum. For this choice of field variables:

i) Work out the kinetic terms for these new field variables, and fix f such that
they become canonical. What are the masses of the H and πa excitations?

ii) Suppose we are interested in physics at energies well below the mass of the
H field. Work out the leading terms in the low-energy EFT you get by
integrating out H . The result is sometimes called a non-linear sigma model.

e) Couple S to a doublet of Dirac fermions,

ψ =

(

p
n

)

,
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with ψL → LψL and ψR → RψR under SU(2)L × SU(2)R. These symmetries
forbid bare fermion masses, but we can still generate masses consistent with the
symmetries by coupling to S:

−L ⊃ g ψ̄LSψR + h.c.

Work out the couplings in terms of the exponential representation of S discussed
above. What are the resulting fermion masses? As the notation here might
suggest, this theory was invented as an early model for the interactions of pions
and nucleons.

2. Operator Scaling

We are often interested in using theories defined at one scale to make predictions at a
very different energy scale. In this case it is often very helpful to extrapolate from one
scale to another using the renormalization group (RG). Let us assume that we start
at scale µ0 and extrapolate to scale µ in a theory whose interactions are dominated by
gauge interactions of strength α(µ) = g2(µ)/4π.

a) Suppose the evolution of the gauge coupling is given by

dα

dt
= −b α2(t) ,

where t = ln(µ/µ0) and b is a non-zero constant. Solve this equation for α(µ) in
terms of α(µ0).

b) The gauge coupling is the coefficient of just one operator in the effective La-
grangian; we can also apply RG to other operators. Suppose we have

−L ⊃ ζ M4−nO
(n)
ζ ,

where O
(n)
ζ is an operator with a (classical) mass dimension of n and M is a fixed

dimension-one constant. Just like the gauge coupling, the coefficient ζ can be
RG-evolved. Suppose its evolution equation is

1

ζ

dζ

dt
= γζ(α(t)) .

Show that a solution to this equation for ζ(µ) is

ζ(µ) = ζ(µ0) exp

[
∫ t

t0

dt γζ(α(t))

]

c) For processes with typical momentum p, the relative contribution of the operator

O
(n)
ζ to the dynamics is

ζ(µ = p)
( p

M

)n−4

For this reason, we say that n is the classical scaling dimension of the operator

O
(n)
ζ . However, since quantum effects lead to the RG evolution of ζ , the full

quantum evolution is a bit different.
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i) Assume that

γζ(t) = −aα(t) .

Use this and your solution for α(µ) to solve for ζ(µ) in terms of ζ(µ0) and
α(µ0). What does this imply for the net momentum scaling of the operator?

ii) Suppose instead that the theory is approximately conformal, in the sense that
α(µ) = α∗ is constant. Show that this implies that γζ = γ∗ is constant as
well, and solve for ζ(µ) in this case. What does this imply for the momentum
scaling of the operator?

d) Suppose we include higher-order corrections to the RG equation for α, and that
these take the form

dα

dt
= −b1α

2 + b2α
3 ,

with b1, b2 > 0. For what special value of α = α∗ does dα/dt vanish? What
happens if we start at µ0 > µ with α(µ0) > α∗ and evolve down to lower energies?
Similarly, what happens if we start at µ0 > µ with α(µ0) < α∗ and evolve down?
The special value α∗ is sometimes called a non-trivial IR fixed point.

3


