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A key feature of Quantum Chromodynamics (QCD) that the effective strength of the
strong gauge coupling factor αs depends on the energy scale at which it is measured; it is
large at low energies but grows smaller at high energies. For processes with characteristic
momentum much larger than ΛQCD ≃ 200 MeV, the QCD gauge coupling is small enough
that processes in the theory can computed reliably in perturbation theory. Even so, the
low-energy dynamics of QCD that lead to confinement must still accounted for if one wants
to compare the predictions of high-energy QCD to experimental data [1, 2, 3, 4].

In this context, QCD confinement enters in two ways. First, when QCD-charged objects
such as quarks and gluons are created in high-energy collisions, they must eventually arrange
themselves into colour-neutral objects since we never observe them in isolation. This occurs
through a process of sequential radiation called showering, followed by hadronization into a
collection of hadrons. The net effect is that final-state quarks and gluons are reprocessed
into collimated jets of colour-singlet hadrons.

The second appearance of confinement in high-energy collisions comes from hadronic
initial states. We are not able to arrange collisions of individual quarks or gluons with
each other, but we can and do set up collisions of hadronic objects made of them, such
as protons. For example, the LHC collides two beams of protons at centre-of-mass (CM)
energies approaching

√
s = 14 TeV. It turns out that a significant fraction of such collisions

can be treated as occuring between the quark or gluon parton constituents of the colliding
hadrons.

In these notes we give a brief overview of how these processes take place and the methods
that are used to compute them. A recurring theme will be factorization, which implies that
the perturbative high-energy hard parts of the collision can be treated mostly independently
of the non-perturbative low-energy soft portions. This splitting is linked to the asymptotic
freedom of QCD and the infrared behaviour of quantum field theories.

1 Creating QCD Stuff: Jets

Let us begin with the creation of quarks and gluons in energetic collisions of uncoloured
particles such as electrons.

1.1 e+e− → hadrons

An important process for testing QCD as the theory of the strong force is e+e− → hadrons,
in which an electron and a positron are smashed together in their CM frame with

√
s =

√

(p1 + p2)2 ≫ 1 GeV. The corresponding ratio of cross sections R(s) = σ(e+e− →
hadrons)/σ(e+e− → µ+µ−) for all observed hadronic final states relative to muons is shown

1



10
-1

1

10

10 2

0.5 1 1.5 2 2.5 3

Sum of exclusive

measurements

Inclusive

measurements

3 loop pQCD

Naive quark model

u, d, s

ρ

ω

φ

ρ′

2

3

4

5

6

7

3 3.5 4 4.5 5

Mark-I

Mark-I + LGW

Mark-II

PLUTO

DASP

Crystal Ball

BES

J/ψ ψ(2S)

ψ3770

ψ4040

ψ4160

ψ4415

c

2

3

4

5

6

7

8

9.5 10 10.5 11

MD-1
ARGUS CLEO CUSB DHHM

Crystal Ball CLEO II DASP LENA

Υ(1S)
Υ(2S)

Υ(3S)

Υ(4S)

b

R

√

s [GeV]

Figure 1: Observed ratios of R(s) = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) compared with
predictions of the quark model, from Ref. [5].

in Fig. 1, taken from Ref. [5]. This is the same plot as shown in notes-08, but now zoomed
in over various energy ranges near quark mass thresholds.

Let us now compare the data for R(s) to a calculation of quark production in e+e− → qq̄.
At leading order, the matrix element gets contributions from diagrams with a photon or a
Z0 in the s-channel, with the photon diagram dominating for

√
s ≪ mZ . Arranging this

into a cross section and taking the ratio to the corresponding muon process, the result for√
s > 2ms is

Rqq(s) :=
σ(e−e+ → qq̄)

σ(e−e+ → µ−µ+)
(1)
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where Nc = 3 is the number of colours and θf = Θ(
√
s− 2mf ). The terms in this expression

come from u, d, s, c, b, and t quarks respectively, and it matches the data quite well for√
s & 2 GeV and away from mass thresholds. In particular, the result of Eq. (1) corresponds

to the dashed green line in Fig. 1. When the calculation is extended to higher orders in
perturbative QCD, the agreement is even better as shown by the red line in Fig. 1.

The experimental success of Eq. (1) suggests that identifying the cross section for pro-
ducing quarks and gluons with the physical production of hadrons is a sensible thing to do.
However, the particles seen in the final state are not quarks or gluons, but rather collections
of many hadrons (in the form of mesons and baryons). It is not immediately obvious how to
get such collections of hadrons from high-energy quarks or gluons.

1.2 Jets

A clue for how to explain this result is the observation that the hadronic products of e+e−

collisions with
√
s ≫ ΛQCD usually consist of two distinct back-to-back jets, each consisting

of a collection of highly collimated mesons and baryons. Summing over all their constituents,
the net momentum distribution of these jets usually agrees very well with the expected
momentum distribution for a pair of quarks emitted in e+e− → qq̄. This suggests that
each high-energy quark produced in the collision typically leads to a jet. A further piece of
evidence for this picture is that the probability to see three energetic jets in the final state
coincides well with the probability to radiate an energetic gluon from one of the quark legs.

The formation of QCD jets makes sense from the point of view of asymptotic freedom.
The qq̄ pair produced has no net colour, and the quark and anti-quark retain a colour
connection in the form of virtual gluons and qq̄ pairs. However, for quarks produced with
relative momenta well above ΛQCD, these soft exchanges are incapable of transferring large
amounts of momentum on the order of the underlying high-energy e+e− → qq̄ hard collision.
Heuristically, each soft exchange takes time Λ−1

QCD, and transfers momentum ΛQCD. This is
much slower than the time scale for the energetic quarks to separate beyond the range of
these soft exchanges, also on the order Λ−1

QCD, and there is not enough time to exchange a
significant amount of momentum.

As each quark travels along, it radiates soft or collinear gluons which in turn split into
more gluons and qq̄ pairs. This is called a parton shower. The probability for each emission
is governed by αs(pT ) (and logarithmic enhancements), where pT is the momentum of the
emitted state transverse to the direction of the initial quark (or gluon). Asymptotic freedom
thus favours low-pT radiation. The constituents of such a shower therefore tend to travel
along together provided the initial momentum of the hard quark (or gluon) is much greater
than the typical transverse momenta pT ∼ ΛQCD of the radiated particles. These roughly
collinear QCD states subsequently attract and bind to form hadrons in a process called
hadronization. Both the parton shower and hadronization are non-perturbative processes
in QCD. There exist a number of phenomenological models for them, with the best-known
implementations encoded within the PYTHIA [6] and HERWIG [7] computer programs.

The essential point that allows us to make perturbative predictions for QCD processes
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is that the hard and soft dynamics factorize. Starting from the hard quark or gluon-level
matrix element, the kinematics of the outgoing jets are set almost entirely by the momenta of
the energetic quarks and gluons that give rise to them. Non-perturbative QCD effects mainly
dress up these final states into collimated jets of colour-singlet hadrons. In fact, this is not so
different from QED. For example, in e+e− → µ+µ− the electromagnetic interaction between
the outgoing muons does have much of an effect on their final momenta for

√
s ≫ 2mµ. In

contrast, for
√
s ≃ 2mµ this interaction does become important and sometimes the outgoing

muons even bind together to form muonium. Analogous quark-antiquark bound states are
observed in Fig. 1 near quark mass thresholds. Furthermore, what we observe as a “muon”
also typically includes a number of soft and collinear photons emitted as radiation that
physical particle detectors are not able to resolve.

2 Making Stuff from QCD: Partons

Our modern understanding of hadrons is that they are bound states of quarks and gluons. A
natural question to ask, then, is what happens when hadrons undergo high-energy collisions.
In many cases, the results of such collisions can be understood in terms of a set of constituent
partons that we identify (loosely) with quarks and gluons.

2.1 Deep Inelastic Scattering and the Parton Model

Much of what we know about the structure of protons (and neutrons) comes from deep
inelastic scattering (DIS). In DIS, an energetic beam of leptons is shot into a thin target
of of nucleons. The leptons scatter off the nucleons, and the momentum of the outgoing
scattered leptons is measured. A specific example is e−p → e−X , where X is an unspecified
(and often unmeasured) hadronic final state. Hard scattering, with momentum transfer
|q2| ≫ ΛQCD, can be understood in terms of the electron scattering off one of the quarks
in the proton through the exchange of a photon (or Z0), as illustrated in Fig. 2. To relate
theory to data we must do two things: i) calculate the electron-quark scattering matrix
element; ii) relate this matrix element to the quark content of the proton.

The first step is straightforward and something we know how to do. Consider the process
e−(k) qi(p) → e−(k′) qi(p

′). Working in the quark-electron CM frame, we have

dσ̂

dt̂
=

2πα2Q2
i

ŝ2

[

ŝ2 + (ŝ+ t̂)2

t̂2

]

, (2)

where Qi is the electric charge of the quark, and ŝ and t̂ are the quark-electron system
Mandelstam variables:

ŝ = (k + p)2, t̂ = (k − k′)2 . (3)

The net electron momentum transferred in the event is q = (k′ − k). Since the Lorentz-
invariant q2 is spacelike, it is standard to define the related positive quantity Q2 = −q2.
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Figure 2: Deep inelastic scattering.

To relate this perturbative quark-level scattering cross section to the underlying electron-
proton cross section, as measured in the lab frame where the proton is essentially at rest, we
must specify how likely it is to get the quark species qi from the proton with the given initial
momentum. This is not something that can be done in perturbation theory. Instead, the
QCD features of confinement and asymptotic freedom suggest a phenomenological parton
model that is found to give an excellent descripton of data.

The main features of the parton model are [1, 3]:

• Hadrons consist of quarks (and anti-quarks) and gluons that are collectively called
partons. They are typically treated as being massless.

• The partons move along with the parent hadron with momentum components trans-
verse to the direction of the parent smaller than the QCD scale: pT . ΛQCD.

• The momentum of the parent hadron is carried collectively by the constituent partons.
If P is the momentum of the parent, each constituent parton carries (longitudinal)
momentum pi = xiP with 0 < xi < 1.

• The probability density that a parton of species i carries momentum fraction x is given
by the parton distribution function (PDF) fi(x).

With these properties, it follows that the total cross section for a high-energy process
involving a hadron N in the initial state A+N → B + C is:

σtot =
∑

i

∫

dx fN
i (x) σ̂(A+ qi(xP ) → B + C) , (4)

where the sum runs over all the partonic constituents of the hadron and σ̂ is the parton-level
cross section. The essential feature of the parton model is that it leads to a factorization
of the perturbative hard parton-level matrix element and the non-perturbative dynamics
embodied in the PDFs.
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Figure 3: Predictions for deep inelastic scattering compared to data.

The PDFs in the parton model are universal (for a given hadron species). Parton densities
are included for u, d, s, c, b, their anti-particles, and the gluon. They satisfy various sum rules
such as

∫

1

0

dx
[

fN
u (x)− fN

ū (x)
]

=

{

2; N = p
1; N = n

(5)

f p
u(x) = f p̄

ū(x) (6)

1 =

∫

1

0

dx
∑

i

fi(x)x (7)

The first two results reflect the net quark content of the nucleons while the third sum rule
corresponds to the partons carrying the momentum of the parent hadron. Some popular sets
of PDFs are CTEQ [8], MRST [9], and NNPDF [10].

Going back to DIS, it is possible to relate the parton momentum fraction x in each event
to observables in that event. Treating all the constituents as massless, a good approximation
for ŝ ≫ ΛQCD, we have

ŝ = (k + p)2 = 2k ·p = 2x k ·P = x(k + P )2 = x s (8)

where s is the electron-proton system Mandelstam variable. We also have

0 = p′
2
= (p+ q)2 = 2xP ·q −Q2 ⇒ x =

Q2

2P ·q (9)

where the first condition comes from the relative masslessness of the outgoing quark.
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Figure 4: Drell-Yan production of µ+µ− in a pp collision.

Applying the parton model to DIS and using the parton-level cross section given in Eq. (2)
(with a change of variables), we find

d2σ

dxdQ2
=
∑

i

f(x)Q2

i

{

2πα2

Q4

[

1 +

(

1− Q2

xs

)]}

, (10)

where Qi is the electric charge of the i-th parton (not to be confused with the momentum
transfer variable Q2). Note that all the kinematic dependence is contained within the curly
braces, while the first factor (outside the braces) depends on x alone. This result is known
as Bjorken scaling. It receives controlled corrections at higher orders in QCD. In Fig. 3 we
show the predictions of the parton model for DIS (with QCD corrections) along with some
experimental data – evidently the theory does very well over many orders of magnitude.
While this result is specific to e−p → e−X , DIS can also be performed using a neutron
target or through the W -mediated process ν̄ℓ p → ℓ−X .

2.2 Drell-Yan

The Drell-Yan process is electroweak production of a lepton pair from a hadronic initial
state. We show an example of Drell-Yan in Fig. 4. The lab frame typically coincides with
the centre-of-mass (CM) frame of the pair of colliding hadrons. The remnants of the protons
not involved in the hard collision are relatively collinear with the collider beam and are not
usually seen.

Following the parton model, the total cross-section for the Drell-Yan process pp → ℓ+ℓ−

is (at leading order)

σ(pp → ℓ+ℓ−) =
∑

ij

∫

dx1

∫

dx2 f
p
i (x1)f

p
j (x2) σ̂(qi(p1)q̄i(p2) → ℓ−ℓ+) , (11)

where p1 = x1P1 and p2 = x2P2. In the pp CM frame,

p1 = x1(E, 0, 0, E) , p2 = x2(E, 0, 0,−E) , (12)

where we have taken the z axis along the direction of the beam. From these expressions
we see that the parton-level Mandelstam variable ŝ is related to the lab-frame Mandelstam
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variable s by

ŝ = (p1 + p2)
2 = 2x1x2 P1 ·P2 = x1x2 s . (13)

Note also that even though the collision is taking place in the pp CM frame, this does not
coincide in general with the CM frame of the colliding partons. Instead, the parton CM
frame has a net boost along the beam direction relative to the lab frame corresponding
to the longitudinal momentum (x1 − x2)

√
s/2. This makes the kinematics of events at

colliders more difficult to reconstruct than if the initial states were fundamental (as opposed
to composite) particles. In many cases we focus entirely on the transverse momentum ~pT
of the particles that are produced, where ~pT is the component of a particle’s momentum
orthogonal (or transverse) to the beam direction.

Historically, DIS has been used to determine parton distribution functions. Since the
same PDFs apply to other processes such as Drell-Yan, we can use the measured PDFs from
DIS to make predictions for Drell-Yan and other cross-sections.

2.3 Parton Evolution

Going beyond the leading order (LO), one encounters an additional complication when
dealing with partons. At the next-to-leading order (NLO) and beyond (NnLO), the PDFs
pick up a dependence on a new dimensionful scale µF that we usually identify with the
typical momentum scale of the underlying hard process, µ2

F ∼ Q2. This scale µF is called
the factorization scale, and it corresponds to where we choose to split up the dynamics of
process into soft (low-energy and non-perturbative) and hard (high-energy and perturbative)
pieces.

To see how this works, consider the NLO correction to the Drell-Yan process in which a
gluon is radiated off one of the initial quark legs. If perturbation theory is to be applicable,
the probability to radiate such a gluon should be small in some sense. Computing the
correction to the hard matrix element from radiating a gluon with transverse momentum
pT , the correction to the hard matrix element goes like

d(∆σ̂)

dpT
∼ αs(pT )

pT
σ̂ . (14)

For large pT we see that this correction is reasonable, being suppressed by both the large
pT and the perturbatively small αs(pT ). However, for small pT ∼ ΛQCD, the correction
becomes very large since αs blows up and the denominator becomes small. This would
seem to invalidate our use of perturbation theory, even though the energy of the underlying
Drell-Yan process is much larger than ΛQCD.

This might look bad, but there is a way out. Note that the problem arises when the
gluon emitted is either very soft or is collinear with the beam. In both cases, for pT . ΛQCD

the gluon continues to travel along with the incident hadron and can’t be said to escape as
an observable particle (or as well see below, a jet of particles). It is therefore sensible to
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include the effects of soft and collinear gluon (or quark) radiation within the PDFs since it
is effectively just modifying the parton content of the initial state.

In contrast to the case of soft gluons, a gluon emitted with large pT ≫ ΛQCD is expected
to escape from the hadron and lead to an additional observable particle in the final state.
Clearly we do not want to include these hard emissions within the PDFs. Instead, we
should keep them as perturbative corrections to the parton-level hard matrix element. More
generally, this leads to the question of what pT value one should use to divide between soft
radiation that is included within the PDFs and hard radiation that is handled as a perturba-
tive correction to the parton-level matrix elements. The answer is µF , the factorization scale,
which represents the dividing line between PDFs and matrix elements. We can choose µF

any way we like, but a judicious choice will help us optimize the perturbative expansion of
the hard matrix elements. This best choice is usually µ2

F ∼ Q2, the typical large momentum
scale associated with the underlying LO hard process.

Different choices of the factorization scale lead to different sets of PDFs that incorporate
varying amounts of NLO (and beyond) parton radiation. We therefore write fi(x, µF ) to
account for this property. Even though the PDFs are inherently non-perturbative, it is
possible to relate PDF sets at different values of µF (≫ ΛQCD) using perturbation theory.
The result is described by the DGLAP1 equations:

dfg(x, µF )

dtF
=

αs(µF )

π

∫

1

x

dz

z

(

Pg→g(z)fg(
x

z
, µF ) + Pq→g(z)

∑

q

[

fq→g(
x

z
, µF ) + fq̄→g(

x

z
, µF )

]

)

,

(15)

dfq(x, µF )

dtF
=

αs(µF )

π

∫

1

x

dz

z

[

Pq→q(z)fq(
x

z
, µF ) + Pg→q(z)fg(

x

z
, µF )

]

.

Here, tF = ln(µF ), while Pg→g, Pq→q, Pq→g, and Pg→q are called splitting functions. They
can be computed in perturbation theory (for µF ≫ ΛQCD). For example, Pg→g corresponds
to diagrams in which a gluon splits into a gluon and something else, while Pg→q corresponds
to diagrams where a gluon splits into the quark q and anything else.
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