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Quantum Chromodynamics (QCD) is the accepted theory of the strong force. It is an
SU(3) gauge theory with a gluon vector boson and a set of massive fermion quark fields
transforming under the fundamental 3 irrep of the gauge group. While the underlying QCD
theory is very simple, the resulting dynamics are anything but. We never actually observe
quarks or gluons as free asymptotic particles. Instead, at low energies (or long distances) we
only ever see colour-neutral bound states of quarks and gluons. This stands in stark contrast
to QED, where we certainly do see free particles charged under the gauge group – electrons
for example. The absence of free colour-charged objects is called confinement.

Confinement is still not completely understood at the quantitative level due to the
breakdown of perturbation theory in QCD at low energies. Despite these challenges, it is
still possible to construct a useful low-energy EFT for the bound states resulting from QCD
confinement. Collectively these bound states are called hadrons, and the most important
examples are mesons and baryons. The quantum numbers of these states can be matched
to the colour-neutral quark operators

M ∼ q̄iq′jδ
i
j , B ∼ qiq

′
jq

′′
kǫ

ijk , (1)

where i and j are colour indices. We discuss some of these ideas here.

1 Aspects of QCD

The fundamental QCD Lagrangian is [1, 2]

L = −1

4
Ga

µνG
aµν +

∑

I

q̄I(iγ
µDµ −mI)qI , (2)

where I = u, d, s, c, b, t, and

Dµ = ∂µ + igst
a
3G

a
µ, (3)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν . (4)

The matrices ta3 are the (eight) generators of the fundamental 3 irrep of SU(3). Gauge
charges are called colour while the different species of 4-component Dirac fermion quarks
are called flavours. The masses mI of the different quark flavours are approximately [3]

mu ≃ 2.5 MeV md ≃ 5.3 MeV ms ≃ 110 MeV
mc ≃ 1.25 GeV mb ≃ 4.5 GeV mt ≃ 173 GeV .

(5)

Of course, this structure fits in nicely with the rest of the SM, with the quark masses arising
from electroweak symmetry breaking.
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1.1 Running Couplings

A key feature of QCD (and other gauge theories) is the scale dependence of the renormalized
coupling gs(µ). Recall that µ is an arbitrary renormalization scale that we can choose as we
wish. When µ ∼ p, the value of this coupling coincides reasonably well with the physical
QCD coupling strength in a process occurring at the characteristic momentum scale p. In a
generic gauge theory, the running coupling g(µ) can be obtained by measuring the coupling
at one momentum scale and solving the renormalization group (RG) equation to extrapolate
it to other momentum scales. At one-loop order, the RG equation is [1]

dg

dt
:= β(t) = − b

(4π)3
g3 , (6)

where the coefficient b is given by

b =
11

3
C2(A)−

∑

r

2

3
T2(r)−

∑

r′

1

3
T2(r

′) , (7)

where C2(A) is the Casimir of the adjoint (C2(A) = N for SU(N)), T2(r) is the trace
invariant of the representation r (T2(N) = 1/2 for the fundamental N irrep of SU(N)),
t = ln(µ/µ0), the first sum runs over all light 2-component fermion reps in the theory, and
the second sum runs over all light. complex scalar reps. In this context, “light” implies reps
with mass m < µ.

Let us apply this result to QCD at high energies, µ ≫ mt, so that all quarks flavours
count as light. The coefficient b is then

bQCD =
11

3
× 3 − 2

3
× 1

2
× 2× 6 = 7 . (8)

Here, we have used the facts that C2(A) = 3 for SU(3), T2(3) = 1/2, each quark flavour
contains two 2-component fermions, and there are six flavours in total. Solving Eq. (6), we
find

αs(µ) =
g2s(µ)

4π
=

αs(µ0)

1 +
bQCD

2π
αs(µ0) ln

(

µ

µ0

) , (9)

where µ0 is some reference scale. Since the coefficient bQCD = 7 is positive, this result (or
Eq. (6)) implies that the QCD coupling strength α2(µ) becomes weaker going to higher
energies This property is called asymptotic freedom, and is a very special feature of non-
Abelian gauge theories.

The flip side of asymptotic freedom is that the QCD coupling strength grows stronger
at lower energies. Starting from µ > mt, let us now extrapolate αs(µ) down to lower scales.
Recall that as µ falls below the mass M of a heavy quark, it stops contributing to the RG
running and the b coefficient in Eq. (7) changes. To match the running above and below
such a mass threshold at µ = M , the (leading order) condition is

lim
µ→M−

g(µ) = lim
µ→M+

g(µ) . (10)
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That is, the running coupling is continuous across the mass threshold. Applying this to
QCD, the coefficients are

bQCD =















7 µ > mt

23/3 mb < µ < mt

25/3 mc < µ < mb

. . .

. (11)

To solve for the numerical value of αs(µ), we also need a reference input value taken from
experiment. The most common convention is to use µ = mZ , where it is found that [3]

αs(mZ) = 0.118± 0.002 . (12)

Together with Eq. (6), we can now solve for αs(µ) at any scale µ.

This treatment of αs(µ) is based on perturbation theory, and it breaks down as the
coupling becomes large, approaching 4π. Numerically, this occurs at a scale that is very
close to where the denominator in Eq. (9) vanishes. Let us define this scale to be µ = ΛQCD.
In terms of it, we can rewrite Eq. (9) as

αs(µ) =
2π

bQCD ln(µ/ΛQCD)
. (13)

The appearance of a dimensionful scale from a dimensionless (but scale-dependent) coupling
is called dimensional transmutation. Numerically, ΛQCD ≃ 200 MeV, and this value charac-
terizes the onset of strong coupling in QCD. In practice, QCD becomes strongly-coupled a
little earlier than this, near E ∼ 1 GeV, which is roughly the mass scale of the light baryons.

1.2 Confinement

Asymptotic freedom suggests a qualitative picture of confinement. Quarks and gluons are
weakly-coupled at high energy, but bind very strongly at low energy as the QCD coupling
grows large. The lowest energy states correspond to configurations in which all the QCD
flux lines connect on themselves, corresponding to colour-neutral bound states.

Another way to think about this is that low energies correspond to large distances, and
we expect that a quark-antiquark pair will bind more and more strongly if we were to try to
pull them apart. Indeed, it is found that the qq̄ potential energy at separation r is modelled
reasonably well by [4]

V (r) ∼ −αs(r
−1)

r
+ Λ2

QCDr. (14)

The first term is a familiar Coulombic attraction, while the second diverges as r → ∞ and
signals confinement. For r & ΛQCD, the energy density between the qq̄ pair becomes large
enough that it is energetically favourable to nucleate a q′q̄′ pair from the vacuum to form a
pair of colour-neutral mesons.
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2 QCD at Low Energies

Confinement implies that the QCD degrees of freedom we observe at energies below E .

ΛQCD are not quarks or gluons, but rather colour neutral objects like mesons and baryons.
To describe these objects efficiently, we would like a field theory in which they appear as the
dynamical fields. In other words, we want a low-energy EFT for QCD.

Such an EFT is not easy to derive. Quarks and gluons are weakly-coupled at energies
well-above ΛQCD, and baryons and mesons are observed to be weakly-coupled at energies
well below it, but in between there is strong coupling. Therefore developing an EFT for low-
energy QCD requires going beyond perturbation theory, and addressing the full dynamics
of the theory. A successful but very challenging approach is to simulate the underlying
gauge theory numerically on a spacetime lattice [5, 6]. A second complimentary approach,
and the one we will discuss here, is to simply write an effective low-energy theory with
the appropriate set of degrees of freedom and all possible interactions consistent with the
underlying symmetries [7, 8, 9]. The coefficients of these interactions can be set by comparing
to observation, or by computing them from QCD using lattice simulations.

2.1 Global Symmetries

Symmetries can provide enormous guidance in formulating EFTs, and this is particularly
true for low-energy QCD. For QCD, the key observation is that the u and d quarks are
both very light relative to ΛQCD, the s quark is somewhat light, and the other quarks are
relatively heavy. Thus, to study the lightest QCD degrees of freedom we should be able to
integrate out the c, b, and t quarks and work only with the u, d, and s quarks.

To simplify the analysis, let us begin by considering a simplified version of QCD with
only u and d quarks and no masses [7]. In this form, it is convenient to assemble these two
quark flavours into left- and right-handed doublets in flavour space,

qL =

(

uL

dL

)

, qR =

(

uR

dR

)

. (15)

In terms of these doublets, the simplified two-flavour QCD Lagrangian becomes

L2 = −1

4
Ga

µνG
a µν + q̄Liγ

µDµqL + q̄Riγ
µDµqR , (16)

with Dµ = ∂µ + igst
a
3G

a
µ for both L and R terms.

The form of the Lagrangian in Eq. (16) has an explicit SU(2)L×SU(2)R×U(1)V ×U(1)A
global flavour symmetry under which the fields transform as

qL I → eiαV eiαALIJqLJ , qRI → eiαV e−iαARIJqRJ , (17)

where we have written the flavour components I, J = u, d explicitly, and L and R are
SU(2)L,R transformations for the fundamental reps in flavour space. The corresponding
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Noether currents for the subgroup factors are

jµV = q̄γµq , jµA = q̄γµγ5q ,

jaµL = q̄γµPLt
a
Lq , jaµR = q̄γµPRt

a
Rq ,

(18)

where taL = taR = σa/2. It is straightforward to check whether these currents are anomalous
with respect to the QCD SU(3)c gauge group. Doing so, one finds that SU(2)L, SU(2)R,
and U(1)V are all anomaly free, while U(1)A is anomalous and therefore not a symmetry of
the full quantum theory. Thus, we should aim to build a low-energy effective theory that is
symmetric under Gflav = SU(2)L × SU(2)R × U(1)V .

2.2 Symmetry Breaking and NGBs

Before attempting to construct such a theory, we should take note of a specific feature of
confinement in this system (that has been verified in lattice studies): strong coupling in
QCD generates a non-zero expectation value for the gauge invariant q̄q quark operator [7],

〈q̄RJqL I〉 = Λ3δIJ , (19)

where Λ ∼ ΛQCD, and I and J run over u and d. This quark condensate expectation value
does not respect the global symmetry group Gflav. In particular, applying a general Gflav

transformation to the operator, the expectation value changes according to

Λ3δIJ → Λ3(LR†)IJ . (20)

Therefore the quark condensate spontaneously breaks Gflav to a smaller subgroup. It is not
hard to see that this subgroup is Hflav = SU(2)V × U(1)V , where SU(2)V is the subgroup
of SU(2)L × SU(2)R transformations with L = R. The global Gflav symmetry is sometimes
called a chiral symmetry, and its breaking is referred to as chiral symmetry breaking.

The spontaneous symmetry breaking pattern Gflav → Hflav has three broken generators,
and there will be three corresponding massless Nambu-Goldstone bosons (NGBs). A generic
expectation is that the other QCD excitations will pick up masses on the order of ΛQCD, so
let us begin by trying to write an EFT for the NGBs and worry about other possible states
later. In this context, the unbroken SU(2)V symmetry is called isospin, while the unbroken
U(1)V corresponds to baryon number (up to an overall normalization of the generators).
Since chiral symmetry breaking plays an essential role in constructing this EFT, it is usually
called chiral perturbation theory.

There is no unique way to build the EFT for the NGBs, but we should at least make
sure that it respects the full underlying Gflav global symmetry, has three explicit degrees of
freedom, and that the corresponding field excitations vanish in the vacuum configuration of
the theory. A convenient way to accomplish these tasks is to use field variables that look like
spacetime-dependent Gflav/Hflav transformations acting on the quark condensate vaccuum.1

1Recall that we did things like this when discussing NGBs in notes-04 [10].
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Comparing to Eq. (20), we note that LR† is a 2× 2 unitary matrix with unit determinant,
and can be written as an exponential of Pauli matrices. This motivates building a theory in
terms of the 2× 2 matrix of fields [7, 11]

Σ(x) = exp [2iΠa(x)ta/f ] , (21)

where ta = σa/2, the Πa(x) are the dynamical NGB fields, and f is an as-yet unspecified
parameter with dimension of mass. Also motivated by the picture of transformations acting
on the vaccuum, we assume further that the field matrix transforms under Gflav by

Σ(x) → LΣ(x)R† . (22)

While the form of Eq. (21) might not be immediately obvious, it satisfies all the requirements
for nice field variables (i.e. the right number of excitations (3), well-defined transformation
properties, vanishing in the vaccuum) provided the vacuum of the EFT coincides with Σ → I.

The Gflav transformation rule of Eq. (22) defines how the Πa fields transform under
this group in a complicated way. To work this out, it is useful to write the transformation
matrices in two equivalent ways:

L = eic
a
Lt

a

R = eic
a
Rta

= eic
a
A
taeic

b
V
tb = e−ica

A
taeic

b
V
tb .

(23)

In the second form, we see that SU(2)V coincides with caA = 0. Acting with an infinitesimal
SU(2)V transformation on Σ (L = R := V ) we find that

Σ(x) → V ΣV † = exp
[

2i VΠa(x)taV †/f
]

, (24)

which implies

Πa → Π′a =
(

δac − fabccbV
)

Πc +O(c2V ) . (25)

Thus Π transforms linearly and in the adjoint representation of SU(2)V . Transformations
by the broken generators of Gflav/Hflav correspond to caV = 0, and yield

Πa → Π′a = Πa + fcaA +O(c2A) . (26)

This is a non-linear transformation on Πa, and it takes precisely the shift form we expect
for a NFB field [10]. These nice transformation properties are the reason why the seemingly
funny choice of field variables made in Eq. (21) is useful.

We turn next to building a Lagrangian in terms of the field variables Σ. We do not
know how to do this exactly, but a necessary requirement is that it be symmetric under
the full Gflav group, even part of the group is spontaneously broken. The simplest real and
symmetric combination of Σ fields is not helpful:

Σ†Σ = I = ΣΣ† . (27)

To get something non-trivial, we need derivatives. The lowest-order terms are

∂µΣ
†∂µΣ → R(∂µΣ

†∂µΣ)R† , ∂µΣ
†∂µΣ → L(∂µΣ∂

µΣ†)L† , (28)
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implying that the trace tr(∂Σ† ·∂Σ) = tr(∂Σ·∂Σ†) is real and invariant under the symmetries.
Thus, the leading term in the Lagrangian of the theory is

Lp2 =
f 2

4
tr(∂µΣ

†∂µΣ) (29)

=
1

2
(∂Πa)2 − 1

3f 2

[

(Πa)2(∂Πa)2 + . . .
]

+ . . .

The first term is a canonical kinetic term for the Π fields while the second is a non-
renormalizable interaction. Relative to the first term, the leading interaction is suppressed
by a factor of p2/f 2, and higher-order terms in the expansion come with even more powers of
Πa/f . Thus, this theory appears to be useful as an EFT for momenta that are small relative
to f .

Terms of even higher order can be included as well, and they come with suppressions of
at least p4/f 4. For example [11],

Lp4 = L1

[

tr(∂Σ† ·∂Σ)
]2

+ L2 tr(∂µΣ
†∂νΣ) tr(∂

µΣ†∂νΣ) (30)

+ L3 tr(∂µΣ
†∂µΣ ∂νΣ

†∂νΣ) ,

where L1, L2, and L3 are unknown dimensionless coupling constants.

2.3 Connecting NGBs with Reality

With a sensible EFT in hand, the next step is to connect the dynamical fields it contains to
physical particles and fix the numerical value of f (and the other couplings). While there
are no massless hadrons, there are three very light mesons, the π0 and π±. These are the
particles we will connect with the Πa fields in our EFT.

To make this connection more precise, let us extend the minimal two-flavour quark theory
to include QED. This corresponds to gauging a U(1)em subgroup of Gflav corresponding to
the combined generator

Q := t3L + t3R +
1

6
I . (31)

Acting on qL, we have t3L = σ3/2 and t3R = 0 to give Q = σ3/2 + 1/6 = diag(2/3,−1/3),
and similarly for qR. Note as well that U(1)em is a subgroup of Hflav = SU(2)V × U(1)V
that remains unbroken after confinement. Applying U(1)em transformations to the Πa, as
defined by the Gflav generator, we find that they can be arranged into combinations with
well-defined electric charges Q = 0, ±1,

π0 = Π3, π± =
1√
2
(Π1 ∓ iΠ2) . (32)

We identify these states with the neutral and charged pions observed in nature.
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To make further progress, we need to compare to data and fix the dimensionful parameter
f in the theory. A nice way to do this is to match the Noether currents for Gflav in the
quark theory with the corresponding currents in the EFT. Even though the choice of field
variables is up to us, the currents correspond to physical charges and should be independent
of the variables used to describe the system. We derived the currents in the quark theory in
Eq. (18). In the EFT, applying Noether’s theorem to the terms in Eq. (29) gives

jµV = i
(

π+∂µπ− − π−∂µπ+
)

+ . . .

jaµL = −i
f 2

2
tr(Σ†ta∂µΣ) = f tr(ta∂µΠ) +O(Π2) , (33)

jaµR = −i
f 2

2
tr(Σ ta∂µΣ†) = −f tr(ta∂µ Π) +O(Π2) .

Consider now the decay of a negatively charged pion. This proceeds through a W−, and its
amplitude is proportional to the matrix element [7]

〈µ−ν̄µ |Hint|π−(p)〉 , (34)

with the interaction operator given by

Hint =
4GF√

2
(ūγµPLd) (µ̄γµPLνµ) . (35)

Contracting fields with external states, the matrix element factorizes into a simple leptonic
piece, and a complicated hadronic piece given by

〈0 |ūγµPLd |π−(p)〉 := −i
1√
2
fπp

µ , (36)

where the right-hand side is fixed by Lorentz invariance. Now, we can write this quark
operator in terms of a current

ūγµPLd =
(

j1µL + i j2µL

)

=
1√
2
f ∂µπ− +O(π2) . (37)

Plunking this into the pion matrix element, we see that to leading order

f = fπ ≃ 92 MeV , (38)

where the latter numerical value is extracted from the measured the rate of pion decays.
Measurements of pion scattering can be used in a similar way to fix the values of L1, L2,
and L3.

2.4 Explicit Symmetry Breaking and Masses

In the theory so far, the Πa fields that we identify with physical pions are massless. This is
in obvious disagreement with the observed pion masses of [3]

mπ0 = 139.57 MeV , mπ± = 134.98 MeV (39)
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The reason for this disagreement is that some important physics has been left out of the
effective theory. Specifically, part of the global Gflav symmetry is broken explicitly by the
non-zero u and d quark masses (as well as gauging U(1)em). Fortunately, these masses are
very small compared to the other dimensionful parameter in the EFT, f = fπ, and they can
be treated systematically as small perturbations.

To add the quark masses, it is convenient to write them in the matrix form

−L ⊃ q̄RMqL + q̄LM
†qR . (40)

This term breaks SU(2)L × SU(2)R down to SU(2)V for mu = md, and to nothing for
mu 6= md. To keep track of the breaking, it is helpful to notice that the full Gflav symmetry
would be preserved is the fixed mass matrix also transformed according to

M → RML† . (41)

Even though M does not actually transform in this way, the EFT should exhibit the full
symmetry if we pretend it does. The leading correction to the EFT that can be written with
this in mind is [7]

−L ⊃ 1

2
Λ̃3 tr(MΣ) + h.c. (42)

where we expect Λ̃ ∼ Λ. Expanding this out, one obtains a pion mass term of

m2
πf

2
π = Λ̃3(mu +md) . (43)

As expected, the pion masses go to zero as the underlying quark masses vanish since the
approximate Gflav symmetry becomes exact.

There is an additional mass splitting between the pions due to QED effects [7]. This arises
because QED gauges only a subgroup of the whole Gflav global symmetry, and therefore
represents an additional source of explicit breaking of the flavour group. Relative to the
dominant QCD dynamics, QED effects are much weaker and we can treat them as small
perturbations on the picture we have derived. Indeed, the correction to the squared masses
due to electromagnetism goes like αemf

2
π and is subleading compared to the effects of the

explicit masses. This is the main source of the small mass splitting between the neutral and
charged pions. In addition, the flavour group Gflav is anomalous with respect to QED, and
this leads to a coupling between the π0 and two photons that provides the dominant decay
channel of the neutral pion with a branching fraction of nearly 99%.

2.5 Adding the Strange Quark

Up to now we have neglected the strange quark, but it turns out to be a pretty good
approximation to include it in the NGB description as well and treat its mass as another
small perturbation. The theory now has an approximate SU(3)L × SU(3)R × U(1)V global
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symmetry that is spontaneously broken by the QCD vacuum down to SU(3)V × U(1)V . To
derive a low-energy EFT, we repeat the steps above but now with a 3× 3 field of the form

Σ = exp [2iΠa(x)ta3/f ] , (44)

where the eight matrices ta3 generate the fundamental of SU(3). This expansion yield an octet
of eight (pseudo-) NGBs that can be identified with the pions and kaons. More precisely,
the components of the expanded Σ field correspond to [7]

Πata =
1√
2





π0/
√
2 + η/

√
6 π+ K+

π− −π0/
√
2 + η/

√
6 K0

K− K̄0 −2η/
√
6



 . (45)

As before, we can derive the approximate masses of these states by adding the 3 × 3 mass
matrix M = diag(mu, md, ms) to the theory as a small perturbation. These masses agree
pretty well with the observed values. A very different set of technology is needed to describe
mesons involving c and b quarks. The top quark, being very heavy, decays too quickly to
form meson bound states.

2.6 Baryons

This framework can also be used to describe baryons, such as the proton and neutron [7].
Their defining feature in this context is that they carry a net charge under the U(1)V
subgroup of Gflav (and Hflav).

2 These states do not correspond to NGBs, and have to
added to the theory by hand. Still, we can constrain the EFT for them by demanding that
the corresponding Lagrangian terms respect the Gflav symmetry.

Treating baryons in this EFT framework might seem a little puzzling because their masses
are at least as large as mp ≃ 938 MeV, and much greater than fπ. According to our
previous EFT discussion, it seems like we should integrate them out. The reason for keeping
them in the theory is that the lightest among them, the proton and neutron (to a good
approximation), are stable. This implies that we can prepare experiments in which protons
and neutrons scatter with each other with low initial and final momenta relative to their
mass, and thus our EFT can be applied within its range of validity to describe such processes.
Such scattering can also create heavier baryons (which are relatively close in mass to the
nucleons), so we should include these states in our theory as well. In contrast, our low-
energy QCD EFT would not be useful for calculating the annihilation of a proton with an
anti-proton, since now the particles in the final state have typical momenta on the order of
p ≃ mp ∼ GeV.

2.7 Beyond NGBs

In addition to the NBG-like mesons, QCD confinement also produces many other meson
states that do not correspond to NGBs. These appear as resonances in e+e− → hadrons,

2 For this reason, U(1)V corresponds to baryon number, up to a normalization factor.
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Figure 1: Total cross section and ratio R(s) for inclusive hadronic production in e+e−

collisions as functions of the CM energy
√
s, from Ref. [3].

as illustrated in Fig. 1, taken from Ref. [3]. In the upper panel of the figure we show the
hadronic production cross section as a function of

√
s =

√

(p1 + p2)2, while in the lower
panel we have the ratio R(s) = σ(e+e− → hadrons)/σ(e+e− → µ+µ−). The region that
is the most challenging to describe theoretically is

√
s ∈ [500 MeV, 2 GeV]. Here, neither

chiral perturbation theory nor perturbative QCD (in terms of quarks and gluons) works very
well. We also see a broad resonance in this region in Fig. 1 corresponding to the ρ meson
(mρ ≃ 770 MeV); the large breadth implies that it couples strongly to other modes and
therefore plays a very important role in this energy range.

The appearance of new non-NGB meson states coincides with the breakdown of chiral
perturbation theory since they were not included in the EFT. Recall that in expanding
the leading EFT operator of Eq. (29), we found an infinite tower of operators with two
derivatives, multiple Πa fields, and suppression by factors of f ≃ 93 MeV. Näıvely, this
would seem to imply that the EFT is only valid up to p ≪ f . However, it turns out that
chiral perturbation theory is reliable up to momenta considerably higher than this, on the
order of p ∼ 4π f ∼ mρ. One reason to expect that this might work is that the scale f does
not correspond to the appearance of any new non-NGB physics.

To estimate the full range of chiral perturbation theory, let us start with only the leading
operator of Eq. (29) and study the sizes of new operators are generated by loops. The leading
interaction from Eq. (29) has the form (π∂π)2/f 2 and corresponds to a 4-point momentum-
space vertex of the form

V2 ∼ p2

f 2
. (46)
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Figure 2: Divergent loop diagram with two V2 vertices that generates a V4 vertex.

Loops involving this (and other vertices from Eq. (29)) will renormalize the operator of
Eq. (29), but they will not change its form due to the underlying symmetries of the theory.
However, loops involving multiple V2 vertices will generate new operators with more powers
of momenta. For example, combining a pair of V2 vertices in a loop as shown in Fig. 2
produces a log-divergent Π-field 4-point function of the form

∆Γ(π4) ∼ 1

(4π)2
p4

f 4
ln

(

Λ2

p2

)

, (47)

where we have cut off the internal loop momentum at q2E = Λ2 and the 1/(4π)2 factor is the
standard dimensionless contribution from each loop. The form of the correction corresponds
to an operator with four derivatives, which by symmetry must take the form of those listed
in Eq. (30) with dimensionless coefficient Li ∼ 1/(4π)2. The induced 4-point vertex from
these new operators therefore takes the form

V4 ∼ p2

f 2

(

p

4πf

)2

. (48)

More generally, symmetric operators with 2n derivatives are generated at (n−1)-loop order,
and these give contribution to the 4-point vertex of [7, 8]

V2n ∼ p2

f 2

(

p

4πf

)2n−2

. (49)

A similar counting applies to other types of vertices.

This analysis shows that the initial non-renormalizable operator of Eq. (29) generates
an infinite number of new operators, as expected, but with a well-defined parametric form.
For our EFT to useful, the effects of operators of increasingly higher dimension, with more
derivatives (2n) in this case, must fall off with increasing n. Based on the scaling of Eq. (49),
we see that the necessary condition is

p ≪ 4π f . (50)

The range of validity can therefore be parametrically larger than f . Indeed, it is standard
practice to write the cutoff of the NGB EFT as Λχ ∼ 4π f .

Comparing to experimental data, this counting of loops and (4π)2 factors actually seems
to work. For example, the measured values of the dimensionless coefficients Li defined in
Eq. (30) are on the order of Li ∼ (few) × 10−3 ∼ 1/(4π)2 [11]. The breakdown scale of the
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NGB EFT near Λχ also coincides with the appearance of new physics in the form of the ρ
meson, with mρ ≃ 770 MeV. This is consistent with the estimate based on Eq. (49) and
only slighly below the maximal value.

To put this another way, the appearance of increasingly higher-dimensional operators
coincides with them being generated by integrating out heavy modes such as the ρ meson.
Related to this, it is standard practice to define

gρ = mρ/f . (51)

The dimensionless ratio gρ > 1 is interpreted as the effective coupling of the ρ (and other
non-NGB states) to the NGBs, and its size reflects that the system is strongly coupled. To
see why, note that the minimal interaction between the vector ρ and the pions should have
the schematic form

−L ⊃ gρ (π∂µπ) ρ
µ − 1

2
m2

ρρµρ
µ . (52)

Integrating out the massive ρ at tree level generates effective pion interactions of the form

−L ⊃
g2ρ
m2

ρ

[

(π∂π)2 +
1

m2
ρ

(π∂2π)2 + . . .

]

, (53)

where the first term is the leading piece and the addtional terms are higher orders in the
expansion of the ρ propagator in powers of p2/m2

ρ. Comparing to our previous results, the
first term matches the form of the interaction in Eq. (29) using 1/f 2 = g2ρ/m

2
ρ while the second

agrees with the leading interaction in Eq. (30) after identifying Li ∼ (f/mρ)
2 ∼ 1/(4π)2.

Going to higher orders in derivatives, the operator scaling factors match the power counting
of loops discussed above.
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