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Chances are you are fairly new to quantum field theory (QFT) [1, 2, 3]. It is a rich and
complicated topic that can take many years to get an intuitive feel for. In this section we
will try to accelarate the process by describing the “modern” interpretation of QFTs that
is used widely in studies of the SM and beyond. The main aspects of this are dimensional
analysis, symmetries, renormalization, and effective field theories.

1 Dimensional Analysis

Dimensional analysis (DA) is an incredibly powerful tool for estimating the sizes of things
without doing any hard calculations. The idea is to keep track of the mass dimensions of
everything in the problem.1 For DA to work optimally, it is also essential to keep track of the
exact and approximate symmetries of the theory. We will illustrate this below with example.

Recall that we usually define a QFT (such as the SM) with an action in d spacetime
dimensions. Consider a theory with a scalar φ and a fermion ψ with Lagrangian

L =
1

2
(∂φ)2 − 1

2
m2φ2 + ψiγµ∂µψ −Mψψ − A

3!
φ3 − λ

4!
φ4 − y φψψ (1)

To figure out the mass dimensions, we use the fact that the action S =
∫

ddx L is always
dimensionless. Using a square bracket to denote the mass dimension, we also have

[S] = 0, [x] = −1, [∂] = +1, [ddx] = −d . (2)

Each term making up the action must be separately dimensionless. Applying this to the
scalar and fermion kinetic terms, we find

0 = −d + 2[φ] + 2 = − d+ 2[ψ] + 1 (3)

so that we have

[φ] = 1 +
(d− 4)

2
, [ψ] = 3/2 +

(d− 4)

2
. (4)

We will mostly work in d = 4, giving [φ] = 1 and [ψ] = 3/2. Moving on to the other terms
in the Lagrangian, we find

[m] = [M ] = 1, [A] = 1 +
(4− d)

2
, [λ] = 0 + (4− d), [y] = 0 +

(4− d)

2
. (5)

Note that the “mass terms” always have dimensions of mass.

1 Since we are using natural units with ~ = c = 1, everything can be expressed with dimensions of mass.
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As a first application of dimensional analysis, suppose we have m ≫ M , so that the
decay φ → ψψ̄ is possible, and let us estimate the corresponding decay rate. In the limit
y → 0, the scalar and the fermions would not interact at all in this theory, so at least one
power of y is needed in the decay amplitude. With m≫ M , the outgoing ψ particles will be
highly relativistic with energies on the order of m. This implies that m is the only relevant
dimensionful quantity for the decay in this limit. Since the decay rate has a mass dimension
of one, the estimate from dimensional analysis is

Γ ∼ y2m . (6)

Up to factors of two and 4π and kinematic corrections that depend on M/m ≪ 1, this is a
good estimate of the full tree-level calculation.

Consider next φφ → φφ scattering in the limit y → 0, A → 0, g → 0. This process can
now occur only through the λφ4 operator, so the scattering amplitude requires at least one
power of λ. At very high energies, the only relevant dimensionful quantity is the centre-of-
mass energy s = (p1 + p2)

2 ≫ m2 = 4E2
cm. Since the total scattering cross section has a

mass dimension of minus two, the DA estimate is

σ ∼ λ2

s
. (7)

This is a reasonable approximation to the full high-energy result.

If the cubic coupling A is non-zero, there is another contribution to the φφ → φφ
scattering cross section. Two powers of the coupling are needed to make an amplitude
with an even number of external states. Taking into account that A has a mass dimension
of one, its contribution to the cross section (neglecting interference with the λ piece) is

σ ∼ A4

s3
. (8)

This falls off more quickly with energy than the contribution from λ.

2 Renormalization

Calculations in QFT involving Feynman diagrams with loops often lead to apparent di-
vergences. This can be unsettling at first, but it turns out that such divergences have
interesting physical implications. Before getting into a few explicit examples, let us mention
that divergences can arise both at very low energies (large distances - called the IR limit)
and at very high energies (short distances - called the UV limit). We will concentrate on UV
divergences here, since IR divergences often cancel once the sensitivity of the experiment
used to measure their effect and diagrams with additional external legs are both taken into
account [1, 2, 3].
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(6)∆Γ∆Γ
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∆Γ(2) (4)

Figure 1: Corrections to 1PI n-point functions of the λφ4 theory at one-loop order.

2.1 Basic Renormalization

To discuss renormalization, consider a real scalar theory with the Lagrangian [1]

L =
1

2
(∂φ0)

2 − 1

2
m2

0φ
2
0 −

λ0
4!
φ4
0 . (9)

In d = 4, λ0 is dimensionless and m0 has dimensions of mass. These terms give a propagator
of i/(p2 − m2

0 + iǫ) and a 4-point vertex −iλ0. The basic objects to be computed in this
theory are iΓ(n), the 1PI connected n-point functions in momentum space with all external
propagators removed. The one-loop corrections to the (2n)-point functions are shown in
Fig. 1. Ignoring external momenta, these go like (n ≥ 1)

∆Γ(2n) ∼ λn0

∫

d4q

(2π)4

(

1

q2 −m2 + iǫ

)n

∼ (finite) + lim
Λ→∞

Λ(4−2n) (10)

These integrals diverge in the UV (q → ∞) for n = 1, 2, but are convergent for all higher n.
(Note that “Λ0” diverges as ln Λ.)

What are we to do with these seemingly infinite quantum corrections to the theory?
The divergences come from loops in which we sum over all possible momenta, that we have
assumed can become arbitrarily large, much larger than what can be accessed experimentally.
This suggests that we are asking more of the theory than what it can provide.2 Instead,
let us treat the theory as an effective theory valid up to some very high energy scale where
we assume new physics comes in and makes the integrals finite. At first glance, this does
not look much better; we have traded formal infinities for unknown finite quantitites and
it is not immediately obvious how this will help us make testable predictions. However, it
turns out that in a renormalizable theory the effects of the unknown new physics can be
parametrized in a finite set of unknown coefficients in the low-energy theory. Once these
unknown coefficients are fixed using experimental data, everything else computed in the
theory is a genuine prediction.

2 Note that something similar happens in classical electrodynamics (or Newtonian gravity) when one tries
to construct a point charge. The energy required to build a uniform charge distribution of radius R and
total charge Q is proportional to Q2/R, which obviously diverges as R → 0.

3



Let us illustrate this in the scalar theory. We will use a method called renormalized
perturbation theory. The first step is to rewrite the Lagrangian in terms of the rescaled field
φ0 = Z1/2φ. Plugging into the original Lagrangian and rearranging, we get [1]

L =
1

2
(∂φ0)

2 − 1

2
m2

0φ
2
0 −

λ0
4!
φ4 (11)

=
1

2
Z(∂φ)2 − 1

2
Zm2

0φ
2 − λ0

4!
Z2φ4 (12)

=
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 (13)

+
1

2
δZ(∂φ)2 − 1

2
δm2φ2 − δλ

4!
φ4 ,

where

δZ = (Z − 1) , δm2 = Zm2
0 −m2 , δλ = Z2λ0 − λ . (14)

The coefficients in the last line of Eq. (12) are called counterterms.

Using this rearranged Lagrangian, let us go back and calculate various n-point functions
(for φ). The strategy will be to compute with the terms in the first line of Eq. (12), and
then add the counterterms as small corrections that begin at one-loop order (so that at tree
level, Z = 1, δm2 = 0 = δλ). The propagator of the theory is now i/(p2 − m2 + iǫ) and
the vertex is −iλ. We also have counterterm corrections in the form of a 2-point interaction
i(δZ p2 − δm2) and a 4-point interaction −i δλ.

With these interactions and our new interpretation of the theory, the renormalization
process involves two steps. The first is to regulate the would-be divergent integrals to make
them finite. There are many ways to do this, but for now we will simply transform to
Euclidean space k0 = ik0E and impose an upper cutoff on the Euclidean magnitude of

q2E = (q0E)
2 + ~q 2 ≤ Λ2 . (15)

The one-loop correction to the 2-point function becomes (schematically)

i∆Γ(2)(p2) = −i λ
2

∫ Λ d4qE
(2π)4

(

1

q2E +m2

)

+ i(p2δZ − δm2) (16)

= ip2
[

λA1 ln

(

Λ2

app2 + amm2

)

+ λA2 + δZ

]

− i

[

λB0Λ
2 + λB1m

2 ln

(

Λ2

bpp2 + bmm2

)

+ λB2m
2 + δm2

]

,

where the coefficients Ai, Bi, and ai are finite and dimensionless. Similarly, the one-loop
4-point function takes the schematic form

iΓ(4)(p2) = −iλ + iλ2
∫ Λ d4qE

(2π)4

(

1

q2E +∆

)2

− iδλ (17)

= −iλ + iλ2
[

C1 ln

(

Λ2

cpp2 + cmm2

)

+ C2

]

− iδλ ,
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where p2 is the momentum scale that characterizes the process of interest, ∆ is a function
of p2 and m2 of mass dimension two, and C1, C2, and ci are finite and dimensionless. At
one-loop, all the other 1PI connected n-point functions are finite.

The second step is the renormalization part itself. This amounts to fixing the coun-
terterms by imposing renormalization conditions that relate the parameters m2 and λ to
experimental observables [1, 4]. Here, we need three renormalization conditions to fix the
three counterterms, and these will require two experimental inputs and one convention choice
for normalizing the propagator.

Starting with the 2-point function, recall that the pole of the resummed propagator is
the physical mass of the particle corresponding to the field φ:

(Prop) =
iR

p2 −m2
phys

+ (non-singular) , (18)

where R is the residue of the pole. Given this fact, a popular choice of renormalization
conditions to fix is to identify m2 with the measured particle mass, and to demand that
the residue of the pole of the propagator is unity. Using our 1-loop result, the resummed
propagator is

(Prop) =
i

p2 −m2
+

i

p2 −m2
(i∆Γ(2))

i

p2 −m2
+ . . .

=
i

p2 −m2

∞
∑

n=0

(−∆Γ(2)

p2 −m2

)n

(19)

=
i

p2 −m2 +∆Γ(2)(p2)
.

Applying the two renormalization conditions by expanding around p2 = m2 = m2
phys,

0 = ∆Γ(2)
∣

∣

p2=m2
, (20)

0 =
d∆Γ(2)

dp2

∣

∣

∣

∣

p2=m2

. (21)

This gives two equations in two unknowns that allow us to solve for δZ and δm2. Note that
the second condition above forces R = 1 at the pole.

We also need to deal with δλ. A reasonable choice is to set the higher-order corrections
to the two-to-two scattering amplitude to zero at the fixed momentum point p2 = m2. This
corresponds to

0 = ∆Γ(4)(m2) := λ+ Γ(4)(m2) , (22)

which fixes δλ and relates λ directly to an observable cross-section.

Together, we have used the three renormalization conditions of Eqs. (20,21,22) to fix
the parameters in the Lagrangian and to determine the counterterms to one-loop accuracy.
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∆Γ

...

(6) ∆Γ (8)

Figure 2: Corrections to (n ≥ 6)-point functions when the ζφ6/M2 operator is added.

Including these counterterms, any other process computed to one-loop will be finite and
provide an unambiguous prediction of the theory. For example, we can now predict two-to-
two scattering cross sections for any other momentum values. The corresponding one-loop
amplitude is

−iM = −iλ + iλ2C1 ln

(

cpp
2 + cmm

2

cpm2 + cmm2

)

. (23)

All the dependence of the theory on unknown UV physics has been absorbed into the
finite parameters λ and m2, which we have fixed in terms of observables. This is the
cost of renormalization: we cannot predict observables starting only from the original bare
parameters m2

0 and λ20 in Eq. (9). Instead, we are only able to predict observables in terms
of a finite set of basis observables. Note as well that the renormalization conditions we
chose are not unique – other choices are also possible, and they would lead to a different
relationship between the renormalized parameters m2 and λ and observables.

2.2 Renormalizabilitly

The λφ4 theory considered here is said to be renormalizable. This means that the renormal-
ization picture can be extended to higher loop orders using the same finite set of counterterm
interactions and renormalization conditions. That one can do this is related to the fact that
only a finite number of n-point functions are UV-divergent at one-loop [3, 4]. A rough
argument for renormalizability can be made based on dimensional analysis. Consider a
possible counterterm for an operator of the form φ6. It would correspond to a divergence in
the 6-point function and would have to have a mass dimension of minus two. To make this
up, the only dimensionful quantities we have to work with are m2, p2, and Λ. However, we
expect to have reasonably smooth limits as m2 → 0 or p2 → 0, so they should only appear as
positive powers. This leaves Λ as the only quantity that can appear in the denominator, but
negative powers of Λ do not correspond to UV divergences (as Λ → ∞). Thus, we only need
counterterms corresponding to the 2- and 4-point (and 0-point) functions. Theories with
couplings that have exclusively non-negative mass dimensions are typically renormalizable.
In particular, the Standard Model (SM) is renormalizable.
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In a renormalizable theory, a finite number of experimental inputs are needed to fix
the parameters of the theory. For a non-renormalizable theory, an infinite number of
experimental inputs are needed. Even so, non-renormalizable theories can still be useful
and predictive provided we only use them at sufficiently low energies and compute to a
finite accuracy [5]. To illustrate this, let us extend the the scalar theory of Eq. (9) with a
higher-dimensional interaction:

L → L − ζ

M2
φ6 , (24)

where ζ is dimensionless and M has dimensions of mass. With this term, we now have a
dimensionful quantity that can appear in denominators, and this allows the possibility of Λ
appearing in numerators (or logarithms) of more n-point functions. For example, the first
diagram in Fig. 2 goes like

∆Γ(6) ∼ λζ

M2

∫

d4q

(2π)4

(

1

q2 −m2 + iǫ

)2

∼ λζ

M2
ln Λ (25)

This is a divergent correction to the 6-point function that needs a new counterterm of the
form δζ φ6/M2 to cancel off. The φ6 interaction also produces new divergences in the 8-point
function:

∆Γ(8) ∼ ζ2

M4
ln Λ . (26)

Going beyond one-loop order, the single φ6 interaction of Eq. (24) produces an infinite
number of new divergences. Each of them requires a counterterm and an experimental
observable to fix its value. Since the number of input observables required is infinite, the
theory is no longer renormalizable.

Things look bad at this point, but once again there is a way out of the mess provided we
stick to energies much lower than the new dimensionful scale M . Consider the contribution
of the φ6 operator of Eq. (24) to a 2 → 4 scattering process with a characteristic momentum
scale p2. By dimensional analysis, the contribution to the cross section must scale like

∆σ ∼ ζ2
( p

M

)4 1

p2
. (27)

Contributions from operators of higher dimension contain even more powers of (p2/M2). In
comparison, the contribution from the renormalizable λφ4 operator goes like

∆σ ∼ λ2
1

p2
. (28)

The key feature is that if we focus exclusively on processes at low energies p2 ≪M2 and de-
mand predictions of finite accuracy, only a finite number of the higher-dimensional operators
need to be considered. This means that we only need a finite number of experimental inputs,
and we can make testable predictions for other observables with a well-defined theoretical
uncertainty. On the other hand, the non-renormalizable theory becomes less and less useful
as the characteristic energy scale p2 approachesM2 since more and more operators need to be
included. When we discuss effective field theories below, we will argue that the dimensionful
scale M can be identified with a mass scale of new physics.
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2.3 Running Parameters and RG

Let us now go back to the basic renormalizable λφ4 theory and examine renormalization in
a slightly different way. The renormalization conditions of Eqs. (20,21,22) all have a clear
physical interpretation, but they can be cumbersome to work with in practice. Instead,
suppose we choose counterterms in a minimal way that removes the dependence on Λ.
Specifically, let us choose

δZ = λA1 ln

(

µ2

Λ2

)

(29)

δm2 = −λB0Λ
2 + λB1m

2 ln

(

µ2

Λ2

)

(30)

δλ = −λ2C1 ln

(

µ2

Λ2

)

, (31)

where µ is an unspecified renormalization mass scale with no particular physical significance.
For obvious reasons, this choice of counterterms is a form of what is called minimal subtrac-
tion (MS) [3, 4]. By choosing our counterterms in this minimal form, we have defined a
different set of renormalized parameters m2(µ) and λ(µ). They depend on the mass scale
µ, and their connection to physical observables is more complicated than before.3 The
important advantage of this scheme, however, is that we can choose µ to be whatever we
like.

To see why this is useful, consider the loop-corrected amplitude for φφ → φφ scattering
given in Eq. (23) derived for our previous “physical” choice of counterterms. As the scattering
energy becomes large, with p2 ≫ m2, the logarithm in the loop correction can become
very large. If such logarithms get big enough, they can overwhelm the suppression of the
additional powers of couplings in the loop corrections and perturbation theory breaks down,
even though the underlying coupling is small. Instead, in our minimal scheme, the one-loop
scattering amplitude for characteristic momentum p2 is related to

i∆Γ(4)(p2) = −iλ(µ) + iλ2(µ)

[

C1 ln

(

µ2

cpp2 + cmm2

)

+ C2

]

. (32)

By choosing µ2 ∼ p2, the logarithm will be of order unity, and perturbation theory will be
optimized. This relation also shows that λ(µ) is perturbatively close to the renormalized
coupling we would derive in the physical scheme by choosing our renormalization condition
for δλ at the momentum scale p2 of interest.

It is interesting to study how the renormalized parameters change as µ is varied. Going
back to our original definitions of these couplings in terms of the bare couplings, Eq. (14),
we can derive differential equations for this evolution [2, 6]. Starting with 1 = (Z − δZ), we
find

1

Z

dZ

dt
=

1

Z

d

dt
(δZ) (33)

= 2λA1 +O(λ2) ,

3For example, m2(µ) is no longer the physical particle mass.
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where t = ln(µ/µ0) for some reference scale µ0. Note that since we only computed to one-
loop order, we can only trust this result to leading non-trivial order in the coupling λ and we
should discard the O(λ2) piece. Next, λ0 = (λ+ δλ)/Z2 is independent of µ, which implies

dλ

dt
= − d

dt
(δλ) +

2

Z

dZ

dt
(λ+ δλ) (34)

= 2λ2C1 + 2λ2A1 +O(λ3) .

Finally, for the mass term we have m2
0 = (m2 + δm2)/Z, giving

dm2

dt
= − d

dt
(δm2) +

1

Z

dZ

dt
(m2 + δm2) (35)

= −λB1m
2 + λA1 +O(λ2) .

The solutions to these equations describe how the parameters evolve as we change µ.

Let us now solve Eq. (34). The right side of this equation depends on the scale µ only
implicitly through λ(µ), and is sometimes called the beta function for λ, βλ(λ). Solving,

λ(µ) =
λ(µ0)

1− 2(A1 + C1)λ(µ0) ln(µ/µ0)
. (36)

This relates the values of λ(µ) defined at different renormalization scales µ. To interpret the
physics of this, let us go back to the one-loop correction to the 4-point function for φφ→ φφ
given in Eq. (32). For scattering at momenta p21, the one-loop correction to the amplitude
is minimized by choosing µ2

1 ≃ p21, which gives an amplitude of M(p21) ≃ λ(µ1). However, if
we try to use the same µ1 to compute the amplitude for scattering at momentum p22 ≫ p21,
we will get a large logarithm and the higher-order terms will be large. Instead, we should
choose µ = µ2 ∼ p22 to get the amplitude M(p22) ≃ λ(µ2). The relation of Eq. (36) tells us
how these two couplings are related to each other, and correspondingly how the scattering
amplitude evolves with energy (on top of just kinematics).

This relation between couplings defined at different renormalization scales is often called
renormalization group (RG) evolution. It goes beyond simple perturbation theory in the
coupling by resumming potentially large logarithms. This can be seen by expanding the
denominator of Eq. (36),

λ(µ) = λ(µ0)

∞
∑

n=0

[2(A1 + C1)λ(µ0) ln(µ/µ0)]
n . (37)

The expansion parameter is now λ ln(µ) instead of just λ. By using the renormalization
group, we have taken care of the worst of the potentially large logarithms! Furthermore,
a pretty good approximation in many cases is to compute quantities using their tree-level
expressions, but written with RG-evolved couplings evaluated at the optimal scale. This is
sometimes called the leading-log approximation. Note that the dependence on µ must cancel
out in any physical observable. In the scattering amplitude example discussed here, this will
occur once small finite corrections to the field normalization (corresponding mainly to the
λ2C2 term in Eq. (16)) are taken into account.
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These ideas can be formalized further in terms of a renormalized effective action [7].
Let iΓ(n)(x1, . . . , xn) be the renormalized 1PI connected truncated n-point functions of the
theory in position space. These are just the Fourier transforms of the objects we have been
computing with Feynman diagrams in momentum space. Putting them together, we can
form the (1PI) effective action for the theory,4

Γ[ϕ] =

∞
∑

n=0

1

n!

[

∫ n
∏

i=1

d4xi ϕ(xi)

]

Γ(n)(x1, . . . , xn) (38)

≃
∫

d4x

[

1

2
Z̃(µ)(∂ϕ)2 − 1

2
m2(µ)ϕ2 − λ(µ)

4!
ϕ4 + (non-local terms)

]

, (39)

where ϕ(x) is an arbitrary scalar function and Z̃(µ) ≃ 1 +O(λ). The point of the effective
action is that if you compute with it at tree-level, you get the full quantum-corrected n-
point 1PI truncated Green’s functions [7]. The non-local terms in this expression generate
the explicitly p2-dependent parts of the full quantum-corrected n-point functions discussed
above. They will be relatively small provided λ is small and we choose µ2 ∼ p2.

3 Symmetries and Anomalies

Symmetries play a central role in all of physics, and they are particularly useful in QFT.
There are two specific results concerning symmetries that we have already discussed in this
course: Noether’s Theorem and Goldstone’s Theorem. Our derivations of these theorems
were performed using the classical action, but they can be carried over almost identically
to the full quantum theory by replacing the classical action with the full quantum effective
action.

When a transformation is a symmetry of the full quantum theory, it can be applied to
organize and constrain quantum corrections. In some cases, however, a transformation that
is a symmetry of the classical action is not a symmetry of the quantum action. When this
occurs, the would-be symmetry is said to be anomalous. We will discuss and illustrate these
features here.

3.1 Symmetries and Quantum Corrections

Symmetry considerations are very useful for organizing quantum corrections. In particular,
they constrain the types of divergences that are possible. On the other hand, quantum
corrections can generate new interactions that were not included in the initial Lagrangian
provided they are consistent with the (quantum) symmetries of the theory.

As a first explicit example, consider the real scalar theory with the Lagrangian of Eq. (9).
The action is clearly invariant under φ0 → −φ0, and this implies that any n-point function

4Note that there is also something called a Wilsonian effective action, which is slightly different [1].
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(or amplitude) with an odd number of φ particles must vanish. Suppose we now extend this
theory with a new interaction:

L → L − A0

3!
φ3
0 (40)

= L − A

3!
φ3 − δA

3!
φ3 ,

where δA = (Z3/2A0 − A). The coupling A0 is a constant with dimensions of mass, and it
ruins the invariance under φ → −φ. Note, however, that the symmetry would be restored
if we also had A → −A. Of course, A is a fixed constant that does not transform, but
pretending that it does can be extremely useful. Here, it implies that any n-point function
with n odd must be proportional to (an odd number of) A factors. For example, at one-loop
we find a correction to the 3-point vertex,

∆Γ(3) ∼ λA (ln Λ + finite) + δA . (41)

The result is proportional to A, as expected. An important implication of this is that if we
start with A = 0, quantum corrections will not generate a non-zero value. The new coupling
will also correct other parameters in the Lagrangian. Its one-loop contribution to the 2-point
function goes like

∆Γ(2) ∼ A2 (ln Λ + finite)− δm2 . (42)

This is a correction to the mass m2, and it respects the restored symmetry with A→ −A.
For a second example, let us expand our scalar theory (with A = 0) to include a Dirac

fermion ψ [8],

L → L + ψ0iγ
µ∂µψ0 − y0φ0ψ0ψ0 (43)

= L + ψiγµ∂µψ − y φψψ − δy φ ψψ ,

with δy = (Z
1/2
φ Zψy0 − y). The extended theory is symmetric under chiral transformations

φ → −φ, ψ → iγ5ψ, ψ → ψiγ5 . (44)

Correspondingly, we have ψγµψ → ψγµψ and ψψ → −ψψ. This implies that a mass term
of the form Mψψ is forbidden by the symmetry, as is the cubic scalar of Eq. (40).

Now suppose we break this symmetry explicitly by adding a fermion mass term,

L → L −M0 ψ0ψ0 (45)

= L −M ψψ − δM ψψ ,

where ∆M = (ZψM0 −M). While the symmetry discussed above is broken explicitly, it
would be restored if the field transformations were accompanied by M → −M as well. At
one-loop, there is a correction to the fermion mass of

∆Γ(ψ̄ψ) ∼ y2M (ln Λ + finite)− δM . (46)
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This is consistent with the restored symmetry forM → −M . There is also a new divergence
corresponding to a φ3 interaction,

∆Γ(φ3) ∼ y3M (ln Λ + finite) . (47)

To cancel this divergence, we need a φ3 counterterm. This implies that we should have
included a φ3 term in the Lagrangian of Eq. (45), along with the fermion mass term, because it
is now consistent with the symmetries of the expanded theory. This is an example of quantum
corrections “generating” a new type of interaction. In general, all possible (renormalizable)
interactions that are consistent with the symmetries of the theory should be included. Note
as well that this correction is consistent with the restoration of the symmetry under A→ −A
(simultaneously with M → −M).

3.2 Anomalies

A surprising result of quantizing field theories is that quantum corrections sometimes break a
symmetries of the classical action. When this happens, the symmetry is said to be anomalous
and the theory is said to have an anomaly [1, 2, 3]. Anomalies are an interesting and
important feature of quantum field theories, and it would be easy to spend a whole course
discussing them. Due to lack of time, we will only cover a few of the essential aspects of
anomalies as they relate to the SM.

In formulating a quantum field theory, one typically needs both an action to define
the fields and interactions, and a procedure for regularization and renormalization to deal
with apparent divergences. Anomalies typically arise when it is impossible to regular-
ize/renormalize the theory in a way to preserves a classical symmetry of the Lagrangian.
An equivalent way to think about this is in terms of a path integral formulation of the
quantum theory. It turns out that renormalizing the theory is closely related to defining
the path integral measure. In this context, anomalous symmetries can be thought of as
transformations that leave the action invariant but induce a non-trivial variation in the path
integral measure.

To identify an anomaly in a continous symmetry, it sufficient to find a non-vanishing
operator matrix element involving the divergence of the corresponding Noether current:

〈O ∂µj
µ〉 6= 0, (48)

where O is any operator in the theory. We will use this approach below.

Chiral fermions can be a source of anomalies in four dimensions. Consider a theory with
left-handed fermions ψLi

and right-handed fermions ψRj
, an Abelian global symmetry G, and

an Abelian gauge symmetry H . Let us assume the LH fermions have charges QG
Li

and QH
Li

under these groups and the RH fermions have charges QG
Rj

and QH
Rj
. The Noether current

for the global symmetry G is

jGµ =
∑

i

QG
Li
ψ̄Li

γµψLi
+
∑

j

QG
Rj
ψ̄Rj

γµψRj
. (49)
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Figure 3: Fermion triangle diagrams contributing to global (left) and gauge (right) anomalies.

One can show that no matter how one regularizes the theory (in a Lorentz-invariant way),
diagrams of the form shown in the left panel of Fig. 3 lead to a non-zero matrix element of
the divergence of the G current with a pair H gauge bosons with coefficient

〈AµAν ∂λjGλ 〉 ∝
∑

i

(QH
Li
)2QG

Li
−
∑

j

(QH
Rj
)2QG

Rj
. (50)

Unless this combination of charges vanishes, the expectation value is non-zero and the global
symmetry G is anomalous. Note that the anomaly vanishes automatically if the theory is
non-chiral, with all the LH and RH fermions coming in pairs with equal charges.5 It is
straightforward to generalize this result to non-Abelian symmetries, and we will do so below.

An anomaly in a global symmetry leads to interesting physical effects in the theory.
However, an anomaly in a gauge “symmetry” would be disastrous since it would lead to
a distinction between field configurations that are supposed to be physically equivalent.
Therefore an important consistency condition for gauge theories with chiral fermions is
that the gauge symmetries (treated as classical global symmetries) be anomaly-free. A
sufficient condition for this to occur is that the sum of all fermion-loop triangle diagrams
with three external gauge boson legs vanish – see the right panel of Fig. 3. These diagrams
are proportional to anomaly coefficients which depend on the chiral fermion representations.

For the SM, the non-trivially vanishing anomaly coefficients are:

SU(3)3c ∝
∑

L

tr(tac{tbc, tcc})− (L→ R) (51)

SU(3)2c × U(1)Y ∝
∑

L

tr(tact
b
cY )− (L→ R) (52)

SU(2)3L ∝
∑

L

trL(t
p
L{tqL, trL})− (L→ R) (53)

SU(2)2L × U(1)Y ∝
∑

L

trL(t
p
Lt
q
LY )− (L→ R) (54)

U(1)3Y ∝
∑

L

Y 3 − (L→ R) (55)

(grav)2U(1)Y ∝
∑

L

Y − (L→ R) (56)

5If we had written all the SM fermion reps in terms of 2-component LH spinors, there would be no pesky
relative minus sign in Eq. (50).

13



Here, the sum
∑

L runs over all left-handed fermion reps, and similarly for R. Sometimes you
will see

∑

L(...) = trL(...). These anomaly coefficients are just the group theoretic factors
associated with the corresponding triangle loops weighted by a relative factor of minus one
for chirality. Note that mixed anomalies with a single non-Abelian factor, like SU(3)2cSU(2)L
or SU(2)LU(1)

2
Y , vanish automatically since they all involve the trace of a single non-Abelian

generator. The last condition is only needed if we want to eventually couple the theory in
a consistent way to gravity (which we do). You will show in the homework that all these
anomaly coefficients vanish in the SM.

As an explicit example, consider the SU(3)2c ×U(1)Y anomaly coefficient in the SM. It is

A331 = trL(t
a
ct
b
cY )− (L→ R) . (57)

The L part of the trace gets contributions from Q. For this, there are two 3 reps of SU(3)c,
one each for the two SU(2)L components uL and dL, and both have hypercharge Y = 1/6.
The R part of the trace comes from uR and dR which are both 3 reps of SU(3)c and have
hypercharges Y = 2/3 and −1/3. Putting things together, and using tr(ta3t

b
3) = δab/2, we

find

A331 = ng

[(

1

2
× 2× 1

6

)

−
(

1

2
× 2

3
− 1

2
× 1

3

)]

= 0 , (58)

where ng = 3 is the number of generations.

4 Effective Field Theories

An effective field theory (EFT) is a field theory that describes the low-energy dynamics
of a more complicated theory in terms of only the light degrees of freedom [5, 8, 9, 10].
By their construction, EFTs are usually only useful at energies well below a built-in UV
cutoff. Despite this limitation, EFTs are very often the most convenient way to calculate
experimental observables at low energies. Indeed, the modern view of the SM is that it is
the EFT limit of a more complicated theory [11].

To illustrate how EFTs work, let us begin with a simple and familiar example:

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 + ψiγµ∂µψ − y φψψ . (59)

This theory is renormalizable, and it has a symmetry under φ → −φ and ψ → iγ5ψ that
forbids odd terms in φ and a mass for ψ. Suppose we are interested in studying the theory
at energies that are far below the mass m of the scalar φ. At such energies, it is impossible
to produce φ particles directly. However, they can still contribute to interactions among ψ
particles. We would like to formulate an EFT containing only the massless ψ particles that
takes this into account.

The dominant effect of φ on the interactions among ψ particles can be seen in the
leading contributions to the scattering process ψψ → ψψ shown in Fig. 4. In the diagrams
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Figure 4: Contributions to ψψ → ψψ scattering mediated by the heavy scalar φ.

contributing to the amplitude, the massive φ particle only appears in the intermediate
propagator. The contribution to the amplitude from the first diagram is

−iM1 = (−iy)2(ū3u1)(ū4u2)
i

t−m2
(60)

= i
g2

m2
(ū3u1) (ū4u2)

(

1 +
t

m2
+

t2

m4
+ . . .

)

, (61)

where p1 and p2 are the incoming momenta, p3 and p4 are the outgoing momenta, t =
(p1 − p3)

2, and we have expanded the propagator in powers of t/m2 in the second line. A
similar expression can be derived for the second diagram with an expansion in u/m2, with
u = (p1 − p4)

2.

To formulate an EFT for the low-energy limit of the full theory defined by Eq. (59), we
must construct an effective Lagrangian involving only the light ψ fields that reproduces the
predictions of the full theory for E ≪ m. This procedure is called matching, and we say
that we have integrated out the scalar to obtain the EFT. All the terms in Eq. (61) can be
reproduced with operators involving only ψ fields, although an infinite number of operators
is needed to do so. Fortunately, we only have to reproduce a finite number of them for
|t| ≪ m2 provided we only want to compute to a finite accuracy. The dominant first term
in Eq. (61) can be obtained with the effective operator

−LEFT ⊃ − y2

2m2
(ψψ)(ψψ) . (62)

The other terms in Eq. (61) can be generated by including similar four-fermion operators
with derivatives acting on the fields and more powers of m2 in the denominator.

In the SM, it is standard practice to formulate the low-energy limit of the weak interac-
tions in terms of an EFT with no explicit W± or Z0 vector bosons. For example, consider
the decay of a muon by way of a W− to νµ eν̄e. The amplitude is

−iM = ūe(−i
g√
2
γµPL)vν̄e ūνµ(−i

g√
2
γνPL)uµ

i

p2 −m2
W

(

−ηµν + pµpν/m
2
W

)

(63)

= −i g2

2m2
W

(

1

1− p2/m2
W

)

(ηµν − pµpν/m
2
W ) ūeγ

µPLvν̄e ūνµγ
νPLuµ/.

The momenta here are all less than the mass of the muon, which is a lot smaller than the
mass of the W . Thus, we can expand this amplitude in powers of p2/m2

W , and it is a good
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approximation (up to corrections of size p2/m2
W ) to keep only the leading term. At this

order, the amplitude becomes

−iM ≃ i
g2

2m2
W

(ūeγ
µPLvν̄e)

(

ūνµγµPLuµ
)

. (64)

Exactly the same amplitude could have been obtained if we had started from a Lagrangian
containing the interaction

L ⊃ 4GF√
2

(ēγµPLνe) (ν̄µγ
µPLµ) , (65)

where GF = g2/8m2
W = 1/(2

√
2v2) is called the Fermi constant. Higher-order terms in the

expansion could also be reproduced by including operators with derivatives acting on the
fields. More generally, the leading effects of the weak interaction at low energies can be
formulated in terms of a set of four-fermion effective operators suppressed by g2/m2

W and
g2/m2

Z . In fact, this is how the theory of the weak force was first developed by Fermi and
others, well before non-Abelian gauge theories and the Higgs mechanism were understood.

An central feature of both EFTs derived above are they they are non-renormalizable, even
though the underlying theories (the Yukawa model and the SM) are. This is not a problem,
and it provides further insight into how to think about non-renormalizable theories. Recall
that we argued that non-renormalizable theories can be used to make testable predictions
provided they are only applied at energies much smaller than the mass scale mEFT that
suppresses the higher-dimensional operators. Even though quantum corrections in such
theories generate an infinite number of new types of divergences, they correspond to operators
of increasing higher dimension suppressed by more powers of m that are numerically small.
These are precisely the same types of operators we neglected in the leading expressions for the
EFTs derived here. In general, the modern interpretation is that non-renormalizable QFTs
are EFTs valid for momenta p2 ≪ m2

EFT . As p2 grows to near m2
EFT , the EFT treatment

breaks down because the full dynamics of the heavy physics characterized by mEFT must be
taken into account. On the other hand, as p2 becomes very small compared to m2

EFT the
non-renormalizable operators become less and less important and the theory approaches a
renormalizable theory.

In the examples considered above, we were also lucky enough to know the full, weakly-
interacting (by assumption) high-energy theories. Things are not always so simple in practice.
Often, we do not know the high-energy theory because we are only able to probe the light
degrees of freedom experimentally. In other cases, we do know the high-energy theory, but
it is strongly coupled near the matching scale. A well-known example of this is QCD, with
the high energy theory consisting of quarks and gluons and the low-energy theory built
from nucleons and mesons. In this case, the matching is more extreme, and the low- and
high-energy degrees of freedom are completely different.

These general features of EFTs have shaped the modern interpretation of the SM as
the low-energy limit of a more complicated theory that describes our Universe. If there
exists new physics beyond the SM, it is likely to show up in the form of non-renormalizable
operators built from SM fields. Despite many experimental searches, no definitive evidence
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of such operators has been found. Even so, a potential example of this are the observed
neutrino masses [12]. These are forbidden in the SM at the renormalizable level, but they
can be induced by an operator of the form [8, 11]

−L ⊃ 1

M2
N

(HL)2 . (66)

The observed neutrino mixings suggest MN ∼ 1013 GeV. Another higher-dimensional oper-
ator that has been searched for extensively is [8]

−L ⊃ 1

M2
QQQL . (67)

This operator can induce proton decays such as p → π0 ē+. Despite extensive searches,
proton decay has never been observed and a lifetime of τp & 1032 yr has been set, with the
specific limit depending on the decay mode [13]. This translates into M & 1016 GeV.
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