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Quantum Field Theory (QFT) is the best tool we know of to describe the physics of
elementary particles. It is the basic language used in elementary particle physics, superstring
theory, and many branches of condensed matter physics. Learning QFT has the reputation
of being difficult, but it is more accurate to say that it is time-consuming. Since I can’t cram
a whole year’s worth of material into a single class, I will try to give you a general flavour
of the topic. For a list of useful textbooks, take a look at Refs. [1, 2, 3, 4, 5, 6, 7]. I also
strongly encourage you to take a full QFT course at some point in your graduate career.

1 General Overview

QFT is nothing more than ordinary quantum mechanics formulated in a relativistically
invariant way and applied to continuous field systems. The only difference from the more-
familiar one-particle quantum mechanics is what we identify as the underlying degrees of
freedom, which in this case are the fields. It might seem strange to use continuous fields
to describe discrete objects like particles. When a field is quantized, however, there often
appear discrete quantum excitations that can be interpreted as particles. This interpretation
is justified a posteriori by its excellent agreement with experiment. On the other hand,
ordinary one-particle quantum mechanics doesn’t get along well with (special) relativity
because it does not account for particle creation and annihilation at high energies. Quantum
field theory avoids this problem, and reduces to one-particle quantum mechanics in the
appropriate limit. For a nice alternative point of view on why we use QFT to describe
elementary particles, read Ch.1 of Burgess&Moore [8].

We usually define a QFT in terms of an action that depends on a set of fields {φi}. For
the cases of interest to us, the action can be written in the form

S[φi] =

∫
d4x L (φi(x)). (1)

The function L (φi) is the Lagrange density, but we will usually just call it the Lagrangian.
Some comments about the action [2]:

• We will usually assume that φi → 0 and ∂µφi → 0 as max{|t|, |x|, |y|, |z|} → ∞ so that
we can ignore total derivatives in the action:

∫
d4x ∂µF (φi) = 0 for any polynomial

function F (φi). The vanishing of fields at the spacetime boundary is usually a necessary
condition for a given field configuration to have finite energy.

• S depends on xµ only through the fields φi(x). This implies invariance under spacetime
translations.
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• S should also be invariant under Lorentz boosts and rotations. These take the form

xµ → x′
µ
(x) = Λµ

νx
ν (2)

φA(x) → φ′(x′) = [M(Λ)] B
A φB(Λ

−1x′) , (3)

where Λ defines a Lorentz transformation and M(Λ) is a transformation matrix that
depends on Λ. As we will discuss later on, the matrices M(Λ) form a representation
of the Lorentz group. Applying this to the action and using d4x′ = d4x, Lorentz
invariance requires that L (φ) → L ′(φ′) = L (φ′) up to total derivatives. In other
words, the Lagrangian after the Lorentz transformation must take the same functional
form as the original Lagrangian.

• The action is local, in that it depends only on functions (and derivatives) of fields at
the same spacetime point. (e.g. There are no terms like

∫
d4x

∫
d4y φ(x)φ(y) in the

action.) This is needed if we want our theory to be causal.

• Dimensions: [S] = 0, [d4x] = −4, so we need [L ] = +4.

• S needs to be real for the theory to be unitary.

An action that satisfies these conditions can potentially give rise to a well-defined,
Lorentz-invariant QFT. Because of Lorentz invariance, we can work with fields that have
well-defined transformation properties under Lorentz transformations. For sufficiently weak
interactions, this allows us to identify fields with particles of definite spins (or helicities):

Scalar (s = 0): φ′(x′) = φ(x)
Fermion (s = 1/2′): ψ′(x′) =M b

a ψb(x) (The indices here are spinor indices.)
Vector (s = 1′): A′

µ(x
′) = Λ ν

µ Aν(x)

A handy rule of thumb is that the Lagrangian will be Lorentz invariant if all the Lorentz
indices on the fields are properly contracted.

In practice, we want to use QFT to compute things that can be compared to experiment.
The standard technique for this is to make a perturbative expansion of the QFT around the
non-interacting free-field theory consisting only of quadratic (and lower) powers of the fields.

Rules:

1. Start with the quadratic (and lower) terms in the Lagrangian and extract from them
the kinetic and mass terms.

2. For this, redefine the field variables to put the kinetic terms in canonical form and
diagonalize the mass matrices.

3. Add the terms higher than quadratic (in terms of the redefined and now-canonical/diagonal
fields) and compute perturbatively with Feynman diagrams.

We will now illustrate these rules for scalar, fermion, and vector fields.
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2 Scalar Fields

The simplest kind of field is a real Lorentz scalar, for which the transformation matrix of
Eq. (3) is trivial (i.e. the unit matrix):

φ(x) → φ′(x′) = φ(x) . (4)

This implies that they describe particles of spin s = 0. The basic quadratic Lagrangian for
a real scalar field is [2]

L =
1

2
(∂φ)2 − 1

2
m2φ2 , (5)

where (∂φ)2 = ηµν∂µφ∂νφ. The first piece here is the kinetic term and the second is the mass
term. The kinetic term has a canonical normalization, corresponding to a momentum-space
propagator of i/(p2 − m2 + iǫ). According to the rules above, this Lagrangian describes a
single particle species of physical mass mphys :=

√
m2. Adding cubic or higher-order terms

to the Lagrangian would introduce self-interactions between the φ particles.

e.g. 1. Non-canonical kinetic term
Suppose we have the Lagrangian

L =
1

2
Z(∂φ)2 − 1

2
m2φ2 , (6)

for some positive constant Z. For Z 6= 1, this deviates from the canonical normalization for
a real scalar because it leads to a propagator of iZ−1/(p2 −m2/Z + iǫ). This can be

repaired by using different field variables, φ(x) = Z−1/2φ̃(x), in terms of which the
Lagrangian becomes

L =
1

2
(∂φ̃)2 − 1

2
(m2/Z)φ̃2 . (7)

The kinetic term in terms of the new variable φ̃ is now canonical. Following our rules, the
physical mass of the corresponding particle is mphys =

√
m2/Z. Note that this only makes

sense if Z > 0. For Z < 0, the theory is inconsistent.

e.g. 2. Multiple scalars and mass mixing
Suppose we now have n real scalars φi (i = 1, 2, . . . , n) with

L =
1

2
δijη

µν(∂µφi ∂νφj)−
1

2
(M2)ijφiφj (8)

=
1

2
ηµν∂µφ

t∂νφ− 1

2
φtM2φ ,

where M2
ij is a real symmetric matrix and a sum over repeated indices (Lorentz and i, j) is

implied. In the second line, we have simply rewritten the first line in terms of a matrix
notation with φt = (φ1, . . . , φn) is an n-component row vector. The kinetic terms of all the
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scalars are canonical, but in general the n× n matrix M2 is not diagonal. Fortunately, any
real symmetric matrix can be diagonalized by an orthogonal transformation,
OtM2O = diag(m2

1, . . . , m
2
n) for some eigenvalues m2

i . We can use this fact to make sense

of the theory by transforming to nicer field variables φ̃. Defining φ = Oφ̃ and plugging into
the original Lagrangian, we find

L =
1

2
ηµν∂µφ̃

t∂ν φ̃− 1

2
φ̃tdiag(m2

1, . . . , m
2

n)φ̃ (9)

=
∑

i

[
1

2
(∂φ̃i)

2 − 1

2
m2

i (φ̃i)
2

]
.

Thus, we obtain a theory with n independent scalar particles with physical masses
mi,phys =

√
m2

i . Note that this only makes sense if all the eigenvalues m2
i are non-negative;

we will learn how to deal with negative eigenvalues later on. More generally, with n real
scalars the kinetic term can also have a mixing matrix Zij (instead of the δij we had above).
To deal with this, first diagonalize the kinetic term, then rescale each of the fields to get
canonical kinetic terms for all fields, and finally diagonalize the resulting mass matrix.

e.g. 3. Complex scalar field
Consider a theory with two real scalars φ1 and φ2 with the same mass. In this case, we can
rewrite the basic quadratic Lagrangian in terms of a single complex scalar
Φ = (φ1 + iφ2)/

√
2:

L =
1

2

[
(∂φ1)

2 + (∂φ2)
2
]
− 1

2
m2

(
φ2

1 + φ2

2

)
(10)

= |∂Φ|2 −m2|Φ|2 , (11)

where |∂Φ|2 = ηµν∂µΦ
∗ ∂νΦ. This form, without the factor of 1/2, is the canonical kinetic

form for a complex scalar with physics mass mphys =
√
m2. The choice of representing the

degrees of freedom in terms of two mass-degenerate real fields or one complex field is a
matter of convenience. However, when the theory has a symmetry under rephasing,
Φ → e−iαΦ, the complex form is usually nicer.

Once the kinetic terms have been put in canonical form and the mass matrix has been
diagonalized, the next step is to study the interactions in the theory. These are encoded in
the terms in the Lagrangian beyond quadratic order. If the interactions can be treated as
small perturbations, it is often convenient to compute their effects on quantum amplitudes
in terms of Feynman diagrams. These consist of fundamental vertices, corresponding to
interactions, connected by propagators. In general, an interaction with ni φi fields leads to
a vertex with ni φi legs.
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3 Fermion Fields

Particles with odd-integer spins are fermions. The most familiar example in four spacetime
dimensions is the four-component Dirac fermion, transforming under Lorentz according to

ψa(x) → ψ′
a(x

′) = [M(Λ)]abψb(x) , (12)

where a, b = 1, 2, 3, 4 are called Dirac indices, M(Λ) is a 4× 4 matrix, and summation over
the repeated Dirac index b is implied. These four components of ψ are related to the two
spin states of a spin s = 1/2 particle plus the two spin states of its distinct antiparticle.

Before we write the basic Lagrangian for a Dirac fermion, let us introduce some nota-
tion [2]. First, generalize to the 2× 2 Pauli matrices to

σ0 = I, σi = σ1,2,3 (13)

with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (14)

Recall that

σiσj = δijI+ iǫijkσk . (15)

Let us also define

σµ = (I, ~σ) , σ̄µ = (I,−~σ) . (16)

In terms of these, we define the 4×4 Dirac matrices in the so-called chiral representation by

γµ =

(
0 σµ

σ̄µ 0

)
. (17)

These satisfy the familiar relation

{γµ, γν} = 2ηµν . (18)

We will also define

γ5 = γ5 = iγ0γ1γ2γ3 = − i

4!
ǫµνλκγµγνγλγκ . (19)

In the chiral representation, one finds

γ5 =

(
−I 0
0 I

)
. (20)

We will also encounter the chiral projectors PL = (1− γ5)/2 and PR = (1 + γ5/2).
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The basic Lagrangian for a Dirac fermion is

L = ψiγµ∂µψ −mψψ , (21)

where the first term is the kinetic piece in canonical normalization and the second is a mass
term with mphys = |m|. Note that this is written in matrix notation with ψ = ψ†γ0. Using
the properties of the Lorentz transformation matrices [M(Λ)]ab, it can be shown that this
Lagrangian is Lorentz invariant.

It is instructive to rewrite the basic Lagrangian of Eq. (21) in a couple of different ways.
First, we can label the Dirac component structure explicitly, which gives

L = ψ∗
a(γ

0)abγ
µ
bc∂µψc −mψ∗

a(γ
0)acψc , (22)

where repeated indices are summed over. This form is messy, and is not usually written
explicitly, but it is good to know how the Dirac indices connect up.

A second useful rewriting of Eq. (21) is in terms of the chiral components of ψ, inspired
by the 2× 2 block structure of the gamma matrices. Let us define

ψ =

(
ψL

ψR

)
. (23)

In a mild abuse of notation, we will also write

ψL := PLψ =

(
ψL

0

)
, ψR := PRψ =

(
0
ψR

)
. (24)

In terms of the chiral components ψL and ψR, the basic Lagrangian of Eq. (21) becomes

L = ψLiγ
µ∂µψL + ψRiγ

µ∂µψR −m
(
ψLψR + ψRψL

)
. (25)

Note that the kinetic term does not mix the chiral components but the mass term does. In
the absence of the mass term, it is possible to write a consistent theory with only one or
the other of the chiral components. The labels L and R correspond to the fact that in the
massless limit, the ψL field describes a fermion of left-handed helicity plus an antiparticle of
right-handed helicity, where helicity refers to the angular momentum orientation relative to
the direction of motion. Similarly, ψR describes a particle with right-handed helicity plus an
antiparticle of left-handed helicity.

As for scalar fields, terms in the Lagrangian beyond quadratic order correspond to
interactions in the theory. If they are small, it is usually convenient to treat them in terms
of Feynman diagrams. We will give examples of Feynman rules involving fermions when we
discuss QED below.

4 Vector Fields

A vector field is one that transforms like a Lorentz 4-vector:

Aµ(x) → A′
µ(x

′) = Λ ν
µ Aν(x) . (26)
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Even though Aµ(x) has four independent components, this field does not describe four
independent particles. A massive vector corresponds to a spin s = 1 particle species with
three components. For a massless vector, there are only two independent helicities. Either
way, the vector field has more components than physical states, so not all the components
are physically independent [9, 10].

The basic Lagrangian for a vector field is

L = −1

4
FµνF

µν +
1

2
m2AµA

µ , (27)

where Fµν = ∂µAν − ∂νAµ is called the field strength. The first piece is the canonically
normalized kinetic term and the second is a mass term corresponding to a physical mass
mphys =

√
m2. The kinetic term here might look a bit funny compared to what we had for

scalars, but it becomes more appealing after integrating by parts (and dropping the surface
term in the action):

L =
1

2
Aµ(ηµν∂

2 − ∂µ∂ν +m2ηµν)A
ν . (28)

Except for the ∂µ∂ν term and the Lorentz indices, this looks just like what one would obtain
for the scalar field Lagrangian of Eq. (5) after integrating by parts.

In the massive case, m 6= 0, the four component object Aµ contains spin s = 0 and s = 1
pieces. The s = 0 part corresponds to configurations of the field that can be written as
a derivative of a scalar, Aµ = ∂µφ for some φ. To keep only the s = 1 part, we need an
additional constraint, which turns out to be

∂µA
µ = 0 . (29)

Going back to Eq. (28), the derivative pieces already conspire to annihilate a potential scalar
component of Aµ:

0 = (ηµν∂2 − ∂µ∂ν) ∂
νφ . (30)

For the mass term, we find after integrating by parts

m2ηµν(∂µφ)(∂νφ) → −m2φ(∂2φ) . (31)

This vanishes for 0 = ∂µA
µ → ∂µ∂

µφ.

The situation for the massless case is a bit more subtle. Now, the theory (with the funny
kinetic term) has an invariance under

Aµ → Aµ + ∂µα , (32)

for any smooth α(x). The interpretation now is that any two field configurations related
by such a transformation are physically equivalent. This effectively removes two degrees of
freedom from the vector allowing it to describe two physical helicity states. Note that this
invariance should remind you of classical electromagnetism, where Aµ = (φ, ~A) is identified
with the scalar and vector potentials. Recall that these objects do not correspond to unique
physical configurations. Instead, it is the electric and magnetic fields derived from them
that are unambiguous and physically relevant. We will discuss this gauge invariance in more
detail later in the course.
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5 Quantum Electrodynamics (QED)

This is the theory of charged fermions interacting with the photon. It consists of a massless
vector for the photon and a set of charged fermions. The Lagrangian is [2]

L = −1

4
FµνF

µν +
∑

i

ψ̄i[iγ
µ(∂µ + ieQiAµ)−mi]ψi (33)

Sometimes we will write Dµ = (∂µ + ieQiAµ), which is called a covariant derivative.

From this Lagrangian one can derive the following Feynman rules:

−i 2

(p  − m  )2 2

Incoming Fermion

Incoming Anti−Ferm

Outgoing Fermion

Outgoing Anti−Ferm

Incoming Photon

Outgoing Photon 

Internal Photon

Vertex

u(p,s)

v(p,s)

u(p,s)

v(p,s)

    (p,   )

    (p,   )ε

ε

λ

λ

µ

µ
∗

µν

i(p + m)

−ieQγµ

ps

s

s

s

p

p

p

µ, λ

µ, λ

Internal Fermion

µ

µ ν

p

p

p

p
η p

Here, u(p, s) and v(p, s) are 4 × 1 fermion and anti-fermion spin vectors for 4-momentum p
and spin state s, with ū = u†γ0. We have also written p/ = pµγ

µ. For photons, ǫµ(p, λ) is the
polarization 4-vector for the polarization state λ. Recall that photons have two independent
transverse polarizations.

To compute a quantum mechanical scattering amplitude:

1. Draw all possible Feynman diagrams at the desired level of perturbative approximation.
(We will stick to the leading order here.)

2. For each diagram, follow the rules listed above to find the mathematical expression
for each diagram. For closed loops, integrate over internal loop momentum and add a
factor of (−1) if it is a fermion loop.

3. Sum the expressions for each of the diagrams. Include any necessary symmetry factors
for identical initial or final states. In the case of fermions, diagrams that differ only by
the interchange of two identical fermion lines come have a relative factor of (−1).

4. The result of all this is (−i) times the amplitude.
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γe µ

µp

p

p

1

2

3

4

p−

+

−

e

Figure 1: Leading Feynman diagram for e+e− → µ+µ−.

e.g. 4 Amplitude for e+e− → µ+µ−
The Feynman diagram for this process is shown in Fig. 1. Following the rules above, we
find the amplitude

−iM = ie2QeQµ
1

p2
(ū3γ

µv4)(v̄2γ
νu1)ηµν . (34)

Here, p = (p1 + p2) = (p3 + p4), the subscripts label the momenta of the spinors, and the
spinor indices are contracted implicitly.

Once we have the amplitude, all we need to do is specify the initial and final fermion spin
or photon polarization states and square the result to find the squared matrix element for a
scattering cross section or a decay rate. However, in many cases we are interested only in the
inclusive unpolarized cross-section. For this, we should average over initial spin/polarization
states and sum over final spin/polarization states. There are a number of tricks for doing
this that make use of the completeness properties of the fermion spinors and the photon
polarization vectors.

Spinor Tricks:

(p/−m) u(p, s) = 0 = (p/+m) v(p, s) (35)∑

s

ua(p, s)ūb(p, s) = (p/+m)ab (36)

∑

s

va(p, s)v̄b(p, s) = (p/−m)ab (37)

γ0(γµ)†γ0 = γµ (38)

tr(γµγν) = 4ηµν (39)

tr(γµγνγλγκ) = 4(ηµνηλκ + ηµκηνλ − ηµληνκ) (40)

tr(γµγνγλγκγ5) = −4iǫµνλκ (41)

{γµγν} = 2ηµν (42)

{γ5, γµ} = 0 (43)

Additional tricks can be found in Ref. [2]. Note that the subscripts in Eqs.(36,37) are Dirac
spinor indices.
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Photon Tricks:
∑

λ

ǫµ(p, λ)ǫ
∗
ν(p, λ) = −ηµν + (stuff you can ignore). (44)

e.g. 5. Squared and summed amplitude for e+e− → µ+µ−
We want the quantity

“|M|2′′ :=
1

2
× 1

2
×

∑

s1,s2,s3,s4

|M(s1s2 → s3s4)|2 (45)

=
1

4
(e2QeQµ

1

p2
)2
∑

s...

ηµν(ū3γ
µv4)(v̄2γ

νu1)[ηαβ(ū3γ
αv4)(v̄2γ

βu1)]
†.

Let us first conjugate the 34 spinor piece. We have

(ū3γ
αv4)

† = v†4(γ
α)†γ0(u†3)

† (46)

= v†4γ
0γ0(γα)†γ0u3

= v̄4γ
αu3.

The 12 piece goes through similarly. Next, we assemble the 12 and 34 pieces and use the
spinor completeness relations. For the 34 part, we get

∑

s3,s4

ū3γ
µv4 v̄4γ

αu3 (47)

=
∑

s3

∑

s4

ū3aγ
µ
abv4bv̄4cγ

α
cdu3d (48)

= (p/+m3)daγ
µ
ab(p/−m4)bcγ

α
cd

= tr[(p/+m3)γ
µ(p/−m4)γ

α]

= 4(pµ3p
α
4 + pα3p

µ
4 − p3 ·p4ηµα)− 4m3m4η

µα. (49)

We have written out the spinor indices in gory detail here, but you can skip this part once
you get the hang of it. Combining with the 12 piece and contracting indices, the result (in
the limit p2 ≫ m2

e,µ such that we can neglect the masses) is

“|M|2′′ = 8(e2QeQµ
1

p2
)2[(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3)] . (50)

Working in the centre-of-mass (CM) frame, we have (after applying energy and momentum
conservation and choosing a nice set of axes)

p1 = (q, 0, 0, q) , p2 = (q, 0, 0,−q) (51)

p3 = (q, q sin θ, 0, q cos θ) , p4 = (q,−q sin θ, 0,−q cos θ) (52)

The summed and squared matrix element is then

“|M|2′′ = e4Q2

eQ
2

µ(1 + cos2 θ) . (53)

This can be used to computed the unpolarized cross section.
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