PHYS 528 Homework \#10

Due: Mar.30, 2017

1. QFT practice \#1.

Recall that the standard expansion for free a Dirac fermion is

$$
\psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}} \sum_{s=1,2}\left[u(k, s) b_{\vec{k}, s} e^{-i k \cdot x}+v(k, s) d_{\vec{k}, s}^{\dagger} e^{i k \cdot x}\right]
$$

where $k^{0}=E_{k}=\sqrt{m^{2}+\vec{k}^{2}}, u(k, s)$ and $v(k, s)$ are the usual Dirac spin vectors for spin state s, and the raising and lowering operators satisfy

$$
\left\{b_{\vec{k}, s}, b_{\vec{p}, r}^{\dagger}\right\}=(2 \pi)^{3} 2 E_{k} \delta^{(3)}(\vec{k}-\vec{p}) \delta_{r s}=\left\{d_{\vec{k}, s}, d_{\vec{p}, r}^{\dagger}\right\}
$$

with all other anticommutators vanishing. We identify $b_{\vec{k}, s}^{\dagger}$ as the creation operator for a fermion of type ψ with 3-momentum \vec{k} and spin state s, and $d_{\vec{k}, s}^{\dagger}$ as the creation operator for the corresponding anti-fermion $\bar{\psi}$. External momentum states correspond to these operators acting on the vacuum:

$$
|\psi(\vec{k}, s)\rangle=b_{\vec{k}, s}^{\dagger}|0\rangle, \quad|\bar{\psi}(\vec{k}, s)\rangle=d_{\vec{k}, s}^{\dagger}|0\rangle
$$

a) Compute $\langle 0| \psi(x)|\psi(\vec{p}, r)\rangle,\langle 0| \bar{\psi}(x)|\bar{\psi}(\vec{p}, r)\rangle,\langle\psi(\vec{p}, r)| \bar{\psi}(x)|0\rangle$, and $\langle\bar{\psi}(\vec{p}, r)| \psi(x)|0\rangle$, and match up your results with the standard Feynman rules for external fermions.
b) If the theory has a $U(1)$ symmetry under rephasing ψ, the conserved current is proportional to $j^{\mu}(x)=\bar{\psi} \gamma^{\mu} \psi$. Define $\tilde{j}^{\mu}(p)=\int d^{4} x e^{-i p \cdot x} j^{\mu}(x)$ and compute $\langle 0| \tilde{j}^{\mu}(q)|\psi(k, s), \bar{\psi}(p, r)\rangle$. What would a Feynman diagram for this look like? Show also that all matrix elements of $\tilde{j}^{\mu}(p)$ between the vacuum and one-particle fermion initial states vanish.
2. QFT practice $\# 2$.

The discussion above carries over to a complex scalar $\phi(x)$ if we remove the spin stuff.
a) Calculate $\langle 0| \phi(x)|\phi(\vec{p})\rangle,\langle 0| \phi^{\dagger}(x)\left|\phi^{*}(\vec{p})\right\rangle,\langle\phi(\vec{p})| \phi^{\dagger}(x)|0\rangle$, and $\left\langle\phi^{*}(\vec{p})\right| \phi(x)|0\rangle$.
b) If ϕ has a symmetry under rephasing, the corresponding current is proportional to $j^{\mu}(x)=-i \phi^{*} \overleftrightarrow{\partial_{\mu}} \phi$. Evaluate $\langle 0| \tilde{j}^{\mu}(p)\left|\phi(\vec{k}) \phi^{*}(\vec{q})\right\rangle$.
c) Suppose the rephasing symmetry of ϕ is spontaneously broken, with $\langle\phi(x)\rangle=v$ at the minimum of the potential. It is now convenient to rewrite the field as

$$
\phi(x)=(v+h / \sqrt{2}) e^{i \rho(x) / \sqrt{2} v},
$$

where $h(x)$ and $\rho(x)$ are real scalar fields. In this case, the physical excitations can be identified with $h(x)$ and $\rho(x)$ with self-conjugate mode expansions of the form $\rho(x)=\int\left[d^{3} k / 2 E_{k}(2 \pi)^{3}\right]\left(a_{\vec{k}} e^{-i k \cdot x}+a_{\vec{k}}^{\dagger} e^{i k \cdot x}\right)$ and states $|\rho(\vec{p})\rangle=a_{\vec{p}}^{\dagger}|0\rangle$. Compute the matrix element $\langle 0| \tilde{j}^{\mu}(p)|\rho(\vec{k})\rangle$.

3. Charged Pions

Let us examine some of the claims we made about pions in two-flavour QCD:
a) We stated that the QED generator was

$$
Q=t_{L}^{3}+t_{R}^{3}+\mathbb{I} / 6
$$

Acting on the field Σ, this means that we set $c_{L}^{a}=\delta^{a 3} \alpha=c_{R}^{a}$ and $\alpha_{V}=\alpha / 6$ (for $L=\exp \left(i c_{L}^{a} t^{a}\right), R=\exp \left(i c_{R}^{a} t^{a}\right)$, and $V=\exp \left(i \alpha_{V}\right)$) for some transformation parameter α, so that finite QED transformations take the form

$$
\Sigma \rightarrow e^{i \alpha t^{3}} e^{i \alpha / 6} \Sigma e^{-i \alpha t^{3}} e^{-i \alpha / 6}
$$

Work out what this implies for the transformation properties of the Σ and Π^{a} fields to linear order in α.
b) Define $\pi^{0}=\Pi^{3}$ and $\pi^{ \pm}=\left(\Pi^{1} \mp i \Pi^{2}\right) / \sqrt{N}$.
i) Express $\Pi^{a} t^{a}$ in terms of $\pi^{0}, \pi^{ \pm}$and combinations of the t^{a}.
ii) Show that $\left[t^{3}, t^{1} \mp i t^{2}\right]=(\mp)\left(t^{1} \mp i t^{2}\right)$.
iii) Use these results to figure out the infinitesimal QED transformations of the π^{0} and $\pi^{ \pm}$fields.
c) To incorporate electromagnetism (EM) into our pion theory, we need to add a photon field and upgrade the regular derivatives on Σ to covariant derivatives. Recall that for a field ψ with $U(1)_{e m}$ charge q, the transformations

$$
\psi \rightarrow e^{i q \alpha(x)} \psi=(1+i q \alpha+\ldots) \psi, \quad A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \alpha
$$

imply that $D_{\mu} \psi=\left(\partial_{\mu}+i q e A_{\mu}\right) \psi \rightarrow e^{i q \alpha} D_{\mu} \psi$. By analogy to this form, and using the infinitesimal EM transformation on Σ you found above, construct a covariant derivative for Σ and use this to build the leading term in the chiral Lagrangian that is $S U(2)_{L} \times S U(2)_{R^{-}}$-invariant for $e \rightarrow 0$. Check that it is indeed covariant to leading non-trivial order in $1 / f$.
Hint: note the connection between the infinitesimal transformation of the field and the covariant derivative and make use of it. Also, commutators.
d) Show that gauging only a subgroup of the global flavour group $G_{\text {flav }}$ explicitly breaks the invariance under $G_{\text {flav }}$. To do so, apply an infinitesimal t_{L}^{1} or t_{L}^{2} rotation to the theory and show that the photon term in the covariant derivative messes up the invariance. What happens if you apply an infinitesimal t_{L}^{3} transformation instead?
4. Read notes-10.

Did you read them? (Y/N)

