PHYS 528 Homework \#7

Due: Mar.9, 2017

1. The narrow width approximation.

Consider a theory consiting of a massless "electron," a fermion f of mass m, and a real scalar of mass $M>m$, with interactions

$$
-\mathscr{L} \supset g_{e} \phi \bar{e} e+g_{f} \phi \bar{f} f
$$

In this theory:
a) Compute the decay widths of ϕ into $e \bar{e}$ and $f \bar{f}$, and the total decay width Γ.
b) Calculate the cross section for $e \bar{e} \rightarrow \phi$ in the CM frame. You should get a leftover delta function. Rewrite it as a delta function on the variable $s=\left(p_{1}+p_{2}\right)^{2}$, where p_{1} and p_{2} are the initial momenta, and express the rest of the cross section in terms of of the decay width $\Gamma(\phi \rightarrow e \bar{e})$ and the mass M.
c) Find the total cross section for $e \bar{e} \rightarrow f \bar{f}$ in the CM frame. In doing so, use the width-corrrected propagator

$$
\text { Prop }=\frac{i}{p^{2}-M^{2}+i M \Gamma}
$$

d) For small couplings g_{e} and g_{f}, we will have $\Gamma \ll M$. In this limit, we can apply the narrow width approximation,

$$
\lim _{\Gamma / M \rightarrow 0} \frac{1}{\left(s-M^{2}\right)^{2}+M^{2} \Gamma^{2}}=\frac{\pi}{M \Gamma} \delta\left(s-M^{2}\right) .
$$

Use this approximation to rewrite the $e \bar{e} \rightarrow f \bar{f}$ cross section in terms of $\sigma(e \bar{e} \rightarrow \phi)$ and $\operatorname{BR}(\phi \rightarrow f \bar{f})=\Gamma(\phi \rightarrow f \bar{f}) / \Gamma$.
2. Z-pole asymmetries.
a) Prove the expression for the left-right asymmetries in terms of the effective Z couplings given in notes-06 (i.e. Eq. (16) starting from Eq. (15)).
b) Compute the numerical values of the left-right asymmetries $A_{f}(f \neq e)$ and compare to data.
Hint: look up "Asymmetry Parameters" under the Z listing here: pdglive.lbl.gov/.
c) Prove the relation between the forward-backward asymmetries and the left-right asymmetries at the Z pole discussed in class. At the pole, you may neglect the photon contribution.
3. A toy model of regularized and renormalized integrals.
a) Evaluate

$$
I_{2}\left(m^{2}\right)=\int_{0}^{\Lambda} d x x^{3} \frac{1}{x^{2}+m^{2}}
$$

b) Compute

$$
I_{4}\left(m^{2}\right)=\int_{0}^{\Lambda} d x x^{3}\left(\frac{1}{x^{2}+m^{2}}\right)^{2}
$$

c) Define "renormalized" functions by

$$
\begin{aligned}
& \widetilde{I}_{2}\left(m^{2}\right)=I_{2}\left(m^{2}\right)+M^{2} \delta_{2}+\left(m^{2}-M^{2}\right) \tilde{\delta}_{2} \\
& \widetilde{I}_{4}\left(m^{2}\right)=I_{4}\left(m^{2}\right)+\delta_{4}
\end{aligned}
$$

for some constants $\delta_{2}, \tilde{\delta}_{2}, \delta_{4}$ and the fixed mass parameter M. Now choose δ_{2}, $\tilde{\delta}_{2}$, and δ_{4} such that $\widetilde{I}_{2}\left(M^{2}\right)=0, \widetilde{I}_{4}\left(M^{2}\right)=0$, and $d \widetilde{I}_{2} / d m^{2}\left(M^{2}\right)=0$. These correspond to "renormalization conditions" at the renormalization scale $m^{2}=M^{2}$. With these choices, find the expressions for $\widetilde{I}_{2}\left(m^{2}\right)$ and $\widetilde{I}_{4}\left(m^{2}\right)$ at general values of m^{2} assuming that $\Lambda^{2} \gg m^{2}, M^{2}$. Show that these are finite as $\Lambda \rightarrow \infty$, and look at what happens to them when m^{2} becomes much larger than M^{2}

