PHYS 528 Homework \#6

Due: Mar.2, 2017

0. Final project topics.

Choose a topic for the final project. A list of potential topics can be found here:
http://trshare.triumf.ca/dmorri/Teaching/PHYS528-2017/fproj.html
Please check your topic with me before you begin on the project. I will help you get started by suggesting some reading material.

1. Z decays.

Compute the partial decay widths of the Z^{0} into each of the SM fermions. You may ignore the fermion mass whenever it is smaller than one tenth the Z^{0} mass: $m_{f}<$ $m_{Z} / 10$. Note that the branching fraction of a particular decay mode with partial width Γ_{i} is $B R_{i}=\Gamma_{i} / \Gamma_{t o t}$. Plug numbers into your formulas and compare to data: http://pdglive.lbl.gov/.
2. Invisible Z decays.

Suppose the SM contains a new "invisible" LH chiral fermion with a coupling strength g_{L} to the Z^{0}. (That is, the Lagrangian interaction is $\bar{\psi}_{L} \gamma^{\mu} Z_{\mu} g_{L} \psi_{L}$.) Derive the upper limit on the size of the coupling g_{L} as a function of the fermion mass m_{ψ} from the requirement that its contribution to the invisible decay width of the Z^{0} be less than $\Delta \Gamma_{i n v}<2 \mathrm{MeV}$.
3. $e^{+} e^{-} \rightarrow f \bar{f}$ scattering. $(f \neq e)$
a) Find the amplitude for this process for a general SM fermion f (that is not the electron e) from the diagram with the photon in the s-channel. Use this to compute the part of summed and squared amplitude from the photon contribution, " $\left|\mathcal{M}_{\gamma}\right|^{2 \text { " }}$. Here and for the rest of this question, you may neglect fermion masses. Also, show your calculations.
b) Find the amplitude for this process from the diagram with the Z^{0} in the s-channel. Use this to compute " $\left|\mathcal{M}_{Z}\right|^{2 \prime}$ from the Z^{0} contribution.
Hint: there are lots of terms, but many of them vanish!
Hint: $P_{L} P_{R}=0, P_{L}^{2}=P_{L}, P_{L} \gamma^{\mu}=\gamma^{\mu} P_{R}, \operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{5}\right)=-4 i \epsilon^{\mu \nu \rho \sigma}$.
Hint: $\epsilon^{\alpha \beta \mu \nu} \epsilon_{\alpha \beta \rho \sigma}=-2\left(\delta^{\mu}{ }_{\rho} \delta^{\nu}{ }_{\sigma}-\delta^{\mu}{ }_{\sigma} \delta^{\nu}{ }_{\rho}\right)$
c) Compute the summed and squared interference term " $\left[\mathcal{M}_{\gamma} \mathcal{M}_{Z}^{*}+(\right.$ h.c. $\left.)\right]$ ".
d) Combine these to find $d \sigma / d \cos \theta$ in the CM frame, where θ is the angle of the outgoing fermion relative to the direction of the incoming electron.
e) Which contribution dominates for $s=\left(p_{1}+p_{2}\right)^{2} \ll m_{Z}^{2}$? Which dominates for $s \simeq m_{Z}^{2}$? What is the asymptotic behaviour for $s \gg m_{Z}^{2}$?

