PHYS 528 Homework \#1

Due: Jan. 19, 2017

1. Consider a theory with two real scalar fields and the Lagrangian

$$
\mathscr{L}=\frac{1}{2} Z_{i j} \eta^{\mu \nu} \partial_{\mu} \phi_{i} \partial_{\nu} \phi_{j}-\frac{1}{2} M_{i j}^{2} \phi_{i} \phi_{j},
$$

where $i, j=1,2$, and

$$
Z=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right), \quad M^{2}=m^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Find the masses of the physical excitations in the theory.
2. Fun with the action.
a) For the scalar action

$$
S[\phi]=\int d^{4} x\left[\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}\right]
$$

integrate the kinetic term by parts so that both derivatives are acting on a single field operator. Also, evaluate the action for the specific field configuration $\phi(x)=$ $a(\vec{k}) \exp (-i k \cdot x)$ for an arbitrary 4-vector $k=\left(k^{0}, \vec{k}\right)$ and function $a(\vec{k})$. Show that it vanishes for $k^{0}= \pm \sqrt{m^{2}+\vec{k}^{2}}$.
b) Do all the same things for the vector boson action

$$
S\left[A^{\mu}\right]=\int d^{4} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}\right] .
$$

c) Show that the basic action for a Dirac fermion is real: $S=S^{*}$ for

$$
S[\psi, \bar{\psi}]=\int d^{4} x \bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

$$
\text { Hint: }\left(\bar{\psi}_{1} \psi_{2}\right)^{*}=\left(\bar{\psi}_{1} \psi_{2}\right)^{\dagger}=\left(\psi_{1}^{\dagger} \gamma^{0} \psi_{2}\right)^{\dagger}=\psi_{2}^{\dagger}\left(\gamma^{0}\right)^{\dagger} \psi_{1}
$$

3. Work out the differential cross section $d \sigma / d(\cos \theta)$ for the process $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$, where θ is the CM-frame angle between the incident electron and the outgoing muon. You may work in the limit that $p^{2} \gg m_{e}^{2}$ and ignore the electron mass $\left(m_{e} \rightarrow 0\right)$, but do keep the full dependence on the muon mass.
Hint: for the integrals over phase space, use the spatial components of the overall delta function to get rid of the $d^{3} p_{4}$ integral, and then use the remaining time (energy) component to get rid of the integration over the magnitude of \vec{p}_{3}. For this, you'll probably want to use the relation $\int d x \delta(f(x)) g(x)=g\left(x_{0}\right) /|d f / d x|_{x=x_{0}}$, where x_{0} is the value of x such that $f\left(x_{0}\right)=0$.
4. Compute the differential and total cross sections for $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$scattering to leading order in QED at very high energy, $E_{C M} \gg m_{\mu}, m_{e}$. This implies that you can neglect the fermion masses.
5. Consider a massive Z^{\prime} vector boson that couples to muons with a vertex factor equal to $-i g^{\prime} \gamma^{\mu}$.
a) A massive vector has three independent polarization states. These can represented by any three independent unit 4-vectors $\epsilon_{\mu}(p, \lambda)$ satisfying the constraints $p^{\mu} \epsilon_{\mu}=0$ and $\epsilon_{\mu}^{*}(p, \lambda) \epsilon^{\mu}\left(p, \lambda^{\prime}\right)=-\delta_{\lambda \lambda^{\prime}}$, where p^{μ} is the four-momentum of the vector boson and $\lambda=1,2,3$ labels the three different polarizations. Find a simple set of polarization vectors in the rest frame of the massive vector. Show that they satisfy the completeness relation

$$
\sum_{\lambda} \epsilon_{\mu}(p, \lambda) \epsilon_{\nu}^{*}(p, \lambda)=-\eta_{\mu \nu}+p_{\mu} p_{\nu} / m_{Z^{\prime}}^{2}
$$

b) Compute the total unpolarized decay width for $Z^{\prime} \rightarrow e^{+} e^{-}$. For this, use the vertex and the completeness relation stated above. Keep the full dependence on the masses of the Z^{\prime} and the electron.

