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1 Introduction

When considering a field theory in regimes where couping constants are small, the use of pertur-
bation theory can yield analytical results that agree with experiment. However, in situations when
coupling constants are large, such as QCD at low energies, perturbation theory breaks down. In such
cases, new methods are needed that do not involve a Taylor series expansion about in the coupling
constant. One such method is lattice field theory. Quantities of interest are calculated using field
defined on a lattice. These calculations are repeated with various lattice spacings to yield a trend
line that is extrapolated to a lattice with infinitely small spacing, which should give the continuum
behaviour, so long as the trend line is well behaved at small lattice spacings.

The key ingredient in the lattice method is the path integral, which dictates that the expectation
value of an operator Ô(φ) that is a function of the fields φ can be found by summing over all paths
weighted by exp(iS(φ, ∂µφ)), where S is the action for the fields φ. The vacuum expectation value is
given by

〈0|Ô(φ)|0〉 =

∫
DφO(φ)exp(iS(φ, ∂µφ))∫
Dφexp(iS(φ, ∂µφ))

(1)

This is a natural place to start for the lattice method. When deriving the path integral method,
one usually first considers the propagation of a particle at position xi at time ti to position xf at
time tf . The expression for the path integral can be found by breaking up the integral into a finite
number of ‘time slices’ and later taking the limit where the time slices are arbitrarily close together.
This procedure will be very similar to what is done in the lattice method, except in most cases the
continuum limit cannot easily be reached analytically and numerical methods must be used instead.

In the expression for the path integral given in (1), the action S appears in the term exp(iS),
which can oscillate rapidly with S, making it difficult to integrate. For this reason, it is useful to use
imaginary time τ , which is related to real time t by τ = it (which is a Wick rotation by π/2 in the
complex t plane). With this time coordinate, the Minkowski metric tensor ηµν becomes ηµν = δµν ,
where µ, ν = 1, . . . , 4 and x4 = τ , which is the four-dimension Euclidean metric tensor. To see why
switching to imaginary time is useful, consider the action of a scalar field φ using real time

S =

∫
d3xdt

[
1

2
∂µφ∂

µφ− V (φ)

]
(2)

where µ = 0, . . . , 3. If we now switch to imaginary time,(2) becomes

S = i

∫
d3xdτ

[
1

2
δµν∂µφ∂νφ+ V (φ)

]
(3)
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where µ = 1, . . . , 4. With this change of variables, exp(iS) becomes exp(−S), which does not oscillate
with S and instead becomes small for large S. When using imaginary time, the metric is Euclidean,
so there is no difference between upper and lower indices, so we can write terms like δµν∂µφ∂νφ as
∂µφ∂µφ, which helps to remind us that we are using imaginary time.

2 Matter Fields

2.1 Scalar Fields

We consider a lattice where the lattice sites are the vertices of a hypercube with side length a, so
that the continuous coordinate xµ becomes

xn = a(n1ê1 + n2ê2 + n3ê3 + n4ê4) (4)

where x4 is the imaginary time coordinate, n = (n1, . . . , n4) are integers, and ê1, . . . , ê4 are unit
vectors. We will define matter fields at each point on the lattice. Since we will be using path integrals
in our lattice calculations, it will be important to know the form of the discretized propagators of our
fields, which enters into the generating functional Z.

We begin by examining scalar fields. The Klein-Gordon equation for a scalar field φ(x) with mass
m in Euclidean space is

(∂µ∂µ −m2)φ(x) = 0 (5)

We can easily discretize this equation by using the three-point formula for the second derivative

1

a2

∑
êµ

(φ(xn − aêµ)− 2φ(xn) + φ(xn + aêµ))−m2φ(xn) = 0 (6)

We can write the Klein-Gordon equation in matrix form by

Knmφm = 0 (7)

where Knm is the inverse propagator in Euclidean space of the field φ, given by

Knm =
1

a2

∑
êµ

(δn−êµ,m + δn+êµ,m)− (8 + (ma)2)δn,m

 (8)

It is also useful to have the momentum space propagator. We can define the Fourier transform of a
function f(xn) defined on the lattice by

f(p) = a4

∞∑
n=−∞

exp(−ipµ(xn)µ) (9)

f(p) is periodic and therefore we can restrict pµ to the first Brillouin zone −π/a < pµ ≤ π/a. The
inverse of this transformation is

f(xn) =

∫ π/a

−π/a

d4p

(2π)4
f(p)exp(ipµ(xn)µ) (10)

2



so that the Kronecker delta can be expressed as

δnm =
a4

(2π)4

∫ π/a

−π/a
d4pexp(ipµ(xn − xm)µ) (11)

By taking the Fourier transform of Knm and using (11), one finds

K(p) = a4
∑
n,m

Knmexp(−ipµ(xn − xm)µ)

= a2

[
4
∑
µ

sin2
(pµa

2

)
+ (ma)2

]
(12)

The propagator K−1
nm in spacetime, which can be found from the relation KnlK

−1
lm = δnm, is then

K−1
nm = a2

∫ π/a

−π/a

d4p

(2π)4

exp(ipν(xn − xm)ν)

4
∑
µ

sin2
(pµa

2

)
+ (ma)2

(13)

This is our first result from our lattice formulation. It is important to check that this result approaches
the propagator in the continuum formulation when the continuum limit a → 0 is taken. Using the
small argument approximation of the sine function, it can readily be seen that the continuum limit
of K−1

nm is

lim
a→0

K−1
nm =

∫
d4p

(2π)4

exp(ipν(xn − xm)ν)

pµpµ +m2
(14)

This equation is written in terms of the Euclidean formulation, where the real time momentum prµ is
related to the Euclidean momentum pEµ by the relationship prµp

rµ = p0p0− δijpipj = −p4p4− δijpipj =
−pEµ pEµ . Therefore, in the limit a → 0, K−1

nm approaches the propagator of scalar field theory in the
continuum, which has a pole at pµpµ = −m2 (or at (pr)2 = m2 using real time).

2.2 Fermion Fields

We now consider fermion fields, so our task will be to discretize the Dirac equation

(iγµ∂µ −m)ψ = 0 (15)

For a metric gµν , the γ-matrices for that space satisfy the Dirac algebra

{γµ, γν} = 2gµν1 (16)

In the Euclidean formulation gµν = δµν . This algebra can be satisfied by choosing γEi = −iγi
and γE4 = γ0, where γ and γE are the real time and Euclidean time γ-matrices, respectively, and
i = 1, . . . , 3. The Euclidean time Dirac equation is then

(γEµ ∂µ +m)ψ = 0 (17)

Since we will be using the Euclidean formulation unless stated otherwise, we will now drop the
superscript E. We will now try to discretize 17 by∑

êµ

γµ
1

2a
[ψ(xn + aêµ)− ψ(xn − aêµ)] +mψ(xn) = 0 (18)
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so that discretized inverse propagator Kn,m which satisfies Kn,mψm = 0 is

(Kn,m)αβ =
1

2a

∑
êµ

(γµ)αβ[δn,m+êµ − δn,m−êµ ] +mδn,mδα,β (19)

Using (11), the Fourier transform of Kn,m is

K(p)αβ =

[
i

a

∑
µ

sin(pµa)γµ +m

]
δαβ (20)

and the propagator K−1
nm is

(K−1
nm)αβ =

∫ π/a

−π/a

d4p

(2π)4

(iγµpµ +m)αβ∑
µ

sin2 (pµa) /a2 +m2
exp(ipν(xn − xm)ν) (21)

We now want to confirm that the propagator K−1
nm in the limit a → 0 approaches the continuum

propagator. Taking this limit, the denominator in (21) approaches

lim
a→0

∑
µ

sin2 (pµa) /a2 +m2 = pµpµ +m2 (22)

Again, we see that the limit a → 0 yields the expected continuum limit, and that the continuum
version of the propagator K−1

nm has a pole at pµpµ = −m2, as seen from the right hand side of (22).
While everything at this point seems well, a problem arises on closer inspection of the left hand

side of (22). For simplicity, consider a masses fermion. For finite lattice spacing a, pµ is restricted
to the first Brillouin zone (BZ) −π/a < pµ ≤ π/a. At the origin of the BZ, pµ = 0, so K−1

nm has a
pole at this point in the BZ, corresponding to an on-shell fermion. However, pµ = π/a is also in the
BZ, in which case sin2 (pµa) = 0, therefore we get another pole at the point pµ = π/a and another
on-shell fermion. This is referred to as fermion doubling. Because pµ has four components, each of
which can equal 0 or π/a, we actually get 24 = 16 on-shell fermions, 15 of which we do not want! This
problem did not arise in the case of the scalar field since the pµ dependent part of the denominator
of the scalar field propagator involved the term sin2(pµa/2), which because of the division by 2 in
the sine function only allows one pole in the BZ. Because of the linearity of the Dirac equation, the
denominator of the fermion propagator does not have the same form as the scalar case, causing the
doubling problem.

There are two popular methods for dealing with the fermion doubling problem, one of which
was proposed by Wilson, which we will examine, and one proposed by J. Kogut and L. Susskind
referred to as the staggered fermions method, which we omit. The main idea of Wilson’s method is
to introduce the extra term (r/2)∂µ∂µψ into the Dirac equation, where r is referred to as the Wilson
parameter. This term (without the factor of r/2) is present in the Klein-Gordon equation and stops
particle doubling in the scalar case and can stop the fermion doubling when introduced into the Dirac
equation. It will be seen that this term vanishes as a→ 0 to preserve the correct continuum limit. We
will then perform lattice calculations for various values of r to find a trend line and then extrapolate
to r = 0 to find physical values.

We return to the Dirac equation (17), but add the additional term(
γµ∂µ +m− r

2
∂µ∂µ

)
ψ = 0 (23)
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Repeating the same procedure as above with the modified Dirac equation yields the discretized inverse
propagator

(Kn,m)αβ =
1

2a

∑
êµ

[((γµ)αβ − rδαβ)δn,m+êµ − ((γµ)αβ + rδαβ)δn,m−êµ ] + (m+ 4r/a)δn,mδα,β (24)

which in momentum space is

K(p)αβ =

[
i

a

∑
µ

sin(pµa)γµ +m+
2r

a

∑
µ

sin2
(pµa

2

)]
δαβ (25)

From the small argument approximation of the sine function, we can see that the additional term in
(25) vanishes like a1 as a → 0, so the correct continuum limit is preserved. With the extra term,
when pµ = π/a, K(p) contains a term 2r/a, preventing a pole at the edge of the BZ.

Unlike scalar fields, that take on c-number values, fermion fields are comprised of Grassmann
numbers, which anticommute. In a full lattice calculation, we will eventually have to resort to a
numerical calculation, such as the numerical evaluation of an integral, usually done by using Monte
Carlo methods. Since these calculations only deal with c-numbers, we will need to simplify the
integration over the fermion fields. This can easily be done by using the rule for integration over
Grassmann variables ψ ∫

dψ = 0

∫
ψdψ = 1 (26)

We would like to calculated the discretized fermionic generating functional Zf

Zf [η, η̄] =

∫ ∏
i

ψ(xi)
∏
j

¯ψ(xj)exp

(
−
∑
nm

[ψ̄(xn)Knmψ(xn) + η̄(xn)ψ(xn) + ψ̄(xn)η(xn)]

)
(27)

where η is a Grassmann-valued source field and Dirac indices have now been suppressed. Neglecting
the source field for the moment, the exponential in Zf can be simplified greatly by writing it in its
power series form where only linear terms in ψ survive the integration over ψ. The source terms can
be dealt with by introducing shift fields, which gives1

Zf [η, η̄] = det(K)exp

(∑
nm

η̄(xn)K−1
nmη(xm)

)
(28)

Therefore, to include the effect of fermion fields in a lattice calculation, one simply has to calculate the
determinant of the matrix K. However, in most lattice calculations, the matrix K is extremely large.
Until recently, this task was too computationally expensive and the approximation that neglected
the effects of off-shell fermions was used, known as the quenched approximation, which set det(K) =
1. The quenched approximation was not motivated by a physical argument and was made simply
to make lattice calculations easier to do. However, with recent advances in computing power and
new algorithms, this determinant can be computed without too much trouble and the quenched
approximation is used less often.

1See [7] p.26 for details of the calculation.
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3 Lattice Gauge Theories

A central interest of lattice field theory are gauge theories, such as QCD. To find the most suitable
way to incorporate gauge theories into the lattice formulation, we begin by reviewing gauge theories
in the continuum. Assume the Lagrangian of interest is invariant under the gauge group G, where
the fermion fields ψ(x) transform under a representation of the group Ω(x) as ψ(x) → Ω(x)ψ(x). It
is not hard to form gauge invariant terms in the Lagrangian that do not involve derivatives, such as
a mass term ψ̄(x)ψ(x), since each field is evaluated at the same point. On the other hand, a term
with a derivative compares a field at two neighboring points. The derivative of ψ(x) in the direction
of the unit vector nµ is given by

nµ∂µψ = lim
ε→0

ψ(x+ εn)− ψ(x)

ε
(29)

which subtracts field ψ at two different points in space. However, since we can apply a different
transformation of the gauge symmetry G at each of these points, we need a way to compare the fields
that takes this into account. This is very similar to what is encountered in general relativity when one
tries to take a derivative. In GR, the concept of a covariant derivative is introduced, which compares
the spacetime coordinates of two different points by making use of parallel transport. We will use the
same concept here, but will compare the transformation of the fields ψ at two different points. We
introduce the link variable U(y, x) that accomplishes this task by having the transformation property

U(y, x)→ Ω(y)U(y, x)Ω(x)† (30)

It is easy to check that ψ(x + εn) and U(x + εn, x)ψ(x) transform in the same way, so that the
difference between these two quantities is meaningful. We can then construct the covariant derivative
Dµ as

nµDµψ = lim
ε→0

ψ(x+ εn)− U(x+ εn, x)ψ(x)

ε
(31)

In the continuum formulation, the derivative compares a field at two infinitely close points with
separation ε, so we can expand U(x+ εn, x) in ε as

U(x+ εn, x) = 1− igεnµArµ(x) +O(ε2) (32)

so that the covariant derivative becomes Dµ = ∂µ + igArµ and we recognize the appearance of the
gauge fields Arµ. The gauge fields are analogous to the Christoffel symbol in GR.

We now turn our attention toward the same procedure on the lattice. The main difference between
taking a derivative in a continuous space and on the lattice is that on the lattice, the separation
between two point on the lattice will not necessarily be small and therefore we should reexamine
the expansion of the link variable in (32). To find the form of the link variable on the lattice, we
can simply divide the path from one lattice point to another into infinitely many infinitesimal paths,
applying (32) at each segment, which for the path between the lattice points x and x+ aêµ yields the
product

Uµ(x) ≡ lim
N→∞

N−1∏
n=0

[
I− igaêµ

N
Arµ(x+ an/N)

]
Arµ

= P exp

[
ig

∫ x+aêµ

x

dxµArµ(x)

]
(no sum on µ for both lines) (33)
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The last line of (33) contains a line integral, where P denotes the path ordering of the multiplication
of the gauge fields. We can see that the link variable Uµ(x) ‘transports’ the gauge transformation
from the point x to the point x+ aêµ. Notice that Uµ(x) depends only on the gauge field Arµ. In the
continuum formulation, Arµ is usually used as the basic variable to describe the gauge particles, which
are defined at each point in the space-time. In the lattice formulation, derivatives compare points
that are separated by finite distances, therefore it is more natural to use the link variables Uµ(x) as
the basic variable to describe the gauge particles. This choice of variables will simplify calculations
when we construct the action for the gauge field. In summery, in the lattice formulation, we define
scalar and fermion fields at lattice sites and describe the gauge fields with the link variables that
connect adjacent lattice sites. It is also important to notice that from (33), it is clear that the link
variable are elements of the representation r of the gauge group G. Finally, notice that the gauge field
Arµ has four degrees of freedom at each point in spacetime, which is paralleled by the four ‘forward’
link variables attached to each lattice point (where ‘forward’ denotes the link variable that connects
a point to the adjacent point in the positively defined direction, so that each link is paired with a
unique lattice point).

We can graphically represent a link Uµ(x) by an arrow from the lattice point x to x+aêµ, shown in
Fig.1. Since U †µ(x) = U−µ(x+aêµ) (where the minus sign in U−µ simply denotes that the path integral
in (33) is to be taken in the opposite direction), we can represent U †µ(x) by an arrow connecting the
same points as Uµ(x), but pointing in the opposite direction.

Figure 1: Link variable in the µ direction.

Using the link variable to rewrite the Wilson fermion discretized Green’s function Knm to be gauge
invariant yields

(Kn,m)αβ[U ] =
1

2a

∑
êµ

[((γµ)αβ−rδαβ)Uµ(xn)δn,m+êµ−((γµ)αβ+rδαβ)U−µ(xn)δn,m−êµ ]+(m+4r/a)δn,mδα,β

(34)
We now would like to find the lattice version of the pure gauge part of the action, which approaches

the appropriate continuum action as the lattice spacing tends to zero. This can be written in the
Euclidean formalism as

SG =
1

4T2(r)

∫
d4xtr(FµνFµν) (35)

where the field strength Fµν is matrix valued (Fµν = F a
µνt

a
r). Since we are using the link variables as

the basic variables for the gauge field, we will need to build a gauge invariant combination of the link
variables. The simplest non-trivial object of this type is the plaquette Uµν(x), which is defined as

Uµν(x) ≡ Uµ(x)Uν(x+ aêµ)U †µ(x+ aêν)U
†
ν(x) (36)

Using the gauge transformation of the link variables on the lattice, Uµ(x)→ Ω(x)Umu(x)Ω†µ(x+ aêµ),
which is the discretized version of (30), it is easy to show that tr(Uµν(x)) is gauge invariant. The link
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variables in the plaquette ‘transports’ the gauge transformation around a square of side length a in
the µν-plane, as shown in Fig.2.

Figure 2: Plaquette in µ-ν plane.

We will now show that a gauge invariant action on the lattice can be built from the plaquette that
in the limit a → 0 approaches the continuum pure gauge action (35). To accomplish this task, we
must first find the form of the plaquette in the limit a→ 0. In this limit, the link variable Uµ(x) can
be approximated by replacing the line integral in (33) by the value of Arµ(x) evaluated in the middle
of the line, Uµ(x) ≈ exp(igaArµ(x+ aêµ/2)) (no sum on µ). Arµ(x+ aêµ/2) can then be expanded in
a to yield

Uµ(x) ≈ exp[iga(Arµ(x) +
a

2
∂µArµ(x))] (no sum on µ) (37)

We can approximate the other link variables in the plaquette in the same manner

Uν(x+ aêµ) ≈ exp[iga(Arν(x) +
a

2
∂νArν(x) + a∂µAν(x))]

U †µ(x+ aêν) ≈ exp[−iga(Arµ(x) +
a

2
∂µArµ(x) + a∂νArµ(x))]

U †ν(x) ≈ exp[−iga(Arν(x) +
a

2
∂νArν(x))] (no sum on µ, ν for all lines) (38)

Substituting these approximations for the link variables into the plaquette (36) and using the Baker-
Campbell-Hausdorff formula eAeB = eA+B+[A,B]/2+... yields to lowest lower in a

Uµν(x) ≈ exp
(
iga2[∂µArν(x)− ∂νArµ(x)]− ga2[Arµ(x), Arν(x)]

)
= exp(iga2Fµν(x)) (39)

We have now related the plaquette Uµν(x) to the field strength Fµν in the continuum limit, so we
would now like to find the combination of plaquettes that approaches (35) in the continuum limit. In
this limit, expanding (39) in powers of a yields

Uµν ≈ 1 + iga2Fµν −
1

2
g2a4FµνFµν +O(a6) (no sum on µ, ν) (40)

so that to lowest power in a∑
n

∑
µ<ν

∑
ν

tr

[
1− 1

2
(Uµν(xn) + U †µν(xn))

]
≈
∑
n

∑
µ,ν

1

4
g2a4Fµν(xn)Fµν(xn) (41)
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where in the right hand side we sum over the plaquette in each orientation (clockwise and counter-
clockwise), and so introduce a factor of 1/2. We can now form the lattice version of the pure gauge
action SG

SG = β
∑
P

tr

[
I− 1

2
(UP + U †P )

]
(42)

where UP = Uµν is shorthand notation for the plaquette variable, ΣP is the sum over all plaquettes

of both orientations, and β = 4T2(r)/g2. Using (41) and a4Σn
a→0
=
∫
d4x, it is evident that the lattice

version of the pure gauge action in (42) approaches the continuum version in (35) in the limit a→ 0.

4 Running Coupling and the Continuum Limit

The previous section dealt with a gauge theory with coupling constant g, which is a bare coupling.
We now raise the question of what the value of this bare coupling should be? We first remark that the
lattice introduces a UV cutoff Λ = π/a that increases for decreasing lattice spacing a. This UV cutoff
introduces a running in the bare coupling constant that can be examined with the renormalization
group. The β-function for the bare coupling g is given by

β̃(g) ≡ − ∂g

∂lna
(43)

where we put a tilde above the β-function to distinguish it from the inverse coupling squared. The
β-function gives the relationship between the bare coupling g and the lattice spacing a. It can be
shown [3] that for SU(N) gauge groups, g → 0 as a → 0. Therefore, the continuum limit can be
reached by taking β ∝ 1/g2 →∞.

While taking the limit a → 0, we have to be mindful of the physical size of our lattice. Suppose
our lattice has NL lattice point along each spatial dimension and NT lattice points along the temporal
dimension. The physical length and time extensions of the lattice, L and T respectively, is then
L = aNL and T = aNT . We can see that if we keep the number of lattice points constant as we
decrease a, we shrink the physical extensions of our lattice, which will approach zero as a → 0. To
avoid this, we increase the number of lattice points as we decrease a such that the physical extensions
of the lattice remain constant.

In summery, to perform our lattice calculations, we choose a number of lattice point and find a such
that the physical extensions of are lattice match some constant values. We then use the β-function
to determine g(a) and perform the lattice calculation to determine the value of some parameter that
is an observable in the continuum limit. We then repeat this process with an increased number of
lattice points to form a trend line in the parameter, which is then extrapolated to a = 0.

We now have the basic ingredients for our formulation of field theory on the lattice and now
investigate some uses of lattice field theory.

5 The Quark-Antiquark Potential

An essential feature of QCD at low energies is confinement, i.e. that quarks and antiquarks are
only observed as bound, colour-neutral states. We were unable to use perturbation theory in this
regime, which makes it an important study of lattice QCD. We can demonstrate confinement by
examining the potential between a non-relativistic quark and antiquark (a similar but more difficult
calculation is required for the three quarks in a baryon).
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We will make a number of approximations to make the lattice calculation easier. The first is that
we will assume that the quark and antiquark are very heavy and can be treated non-relativistically, so
that the notion of a potential is meaningful. We will use the limit that the mass of the quark/antiquark
approaches an infinte mass, so that we can treat them as sationary. Although we will treat the on-
shell quark and antiquark as very heavy, we expect that virtual quarks will enter into the calculation.
Since these quarks will in general be off-shell, we cannot use the same non-relativistic approximation.
While in reality we cannot isolate a particular quark and label it as a finite or infinte mass quark,
for the purpose of our lattice calculation we will make this distinction to make the calculation easier.
We label the heavy quark/antiquark with the spinors ψQ and ψ̄Q and label the light quarks with the
spinors ψ and ψ̄

We would like the study the gauge invariant state consisting of a quark and antiquark at (Eu-
clidean) time T

|Ψ(~x, ~y, T )〉 = ψ̄Q(~x, T )U(~x, T ; ~y, T )ψQ(~y, T ) |0〉 (44)

where U(~x, T, ~y, T ) =
∏

l n
µ
l Uµ(T ) is the product of link variables along a straight path connecting the

quark and antiquark at positions ~x and ~y, nµl is a unit vector along this path, and |0〉 is the ground
state of the system. Since the two spinors in (44) are spatially separated, U(~x, T, ~y, T ) is required in
the expression to allow a comparison between the gauge transformations at each point.

Consider now the Green’s function for the propagation of the quark-antiquark state from the
positions ~x and ~y at time T = 0 to the positions ~x′ and ~y′ at time T , given by

G(~x, ~y, ~x′, ~y′, T ) = 〈0|T (ψ̄Q(~y′, T )U(~y′, T ; ~x, T )ψQ(~x′, T )ψ̄Q(~x, 0)U(~x, 0; ~y, 0)ψQ(~y, 0))|0〉 (45)

where T denotes the time-ordering operator.
To extract the quark-antiquark potential, we will use a similar method as used in the Feynman-Kac

formula to find the ground state energy of a non-relativistic particle of mass m moving in a potential
V (x). In this case, the propagator for the particle to move from position x to x′ in real time t is given
by

G(x, x′, t) = 〈x′|e−iHt|x〉 (46)

where H = p2/2m+ V (x). By inserting a complete set of energy eigenstates |n〉 into (46) yields

G(x, x′, t) =
∑
n

〈x′|n〉 〈n|x〉 e−iEnt (47)

Switching to Euclidean time T makes the replacement e−iEnt → e−EnT , so that the exponential term
now damps higher energy states more than lower ones. Taking the large Euclidean time limit T →∞
gives

lim
T→∞

G(x, x′, t)→ 〈x′|0〉 〈0|x〉 e−E0T (48)

We see that the ground state E0 can be extracted from the propagator in the large Euclidean time
limit.

With this in mind, we return to the quark-antiquark case, starting before the quantization onto
the lattice. In the limit where the valence quark masses are infinite, their positions are static. Taking
the same steps as above, the quark-antiquark Green’s function G(~x, ~y, ~x′, ~y′, T ) in the limit T → ∞
is 2

lim
T→∞

(
lim

mQ→∞
G(~x, ~y, ~x′, ~y′, T )

)
→ δ(3)(~x′ − ~x)δ(3)(~y′ − ~y)e−E0(R)T (49)

2See [7] p.99 for more details.
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where R = |~x− ~y|.
We will now compute this Green’s function, which is given by

G(~x, ~y, ~x′, ~y′, T ) =
1

Z

∫
DADψDψ̄DψQDψ̄Q(ψ̄Q(~y′, T ) . . . ψQ(~y, 0))e−S (50)

Under our assumptions, the action S can be broken down as

S = SG[A] + SF [ψ, ψ̄, A] + SF [ψQ, ψ̄Q, A] (51)

where SG is the pure gauge part of the action and SF is the fermionic part.
We first consider SF [ψQ, ψ̄Q, A] and separate the pure fermionic term from the fermion-guage field

interaction term. Let KQ
mn, given in (24), represent the pure fermionic Green’s function for the heavy

quarks. The heavy quark fields can be integrated over, as was done in (28), to give a coefficient of
det(KQ). Since we will take the limit mQ → ∞, from (24) we can see that det(KQ) will approach
an infinite constant that will be canceled by the same term in Z in the denominator of (50). Since
we are considering these quarks to be non-relativistic, we will take the interaction action between the
heavy quarks and the gauge field Aµ as Sint =

∫
d4xjµ(x)Aµ(x), where jµ is the current associated

with the non-relativistic heavy quarks. Since the quark and antiquark are assumed to be stationary,
we can take ji = 0 and j4(z) = −igδ(~z − ~x) + igδ(~z − ~y) so Sint becomes

Sint = −ig
∫
dτ(A4(x)− A4(y)) (52)

So far, the integration over τ has been from −∞ to∞. Consider now the approximation where we
make the substitution

∫∞
−∞ dτ →

∫ T
0
dτ for T � R, so that the integration in (52) can be approximated

by the integral over a closed loop∫ T

0

dτ(A4(x)− A4(y)) =

∫ T

0

dτA4(x) +

∫ 0

T

A4(y) ≈
∮
C

dxµAµ(x) +O(R/T ) (53)

where C is the loop defined in Fig.3. With this approximation, exp(−Sint) becomes

exp(−Sint) ≈ exp(ig

∮
C

dxµAµ(x)) (54)

By comparison to (33), exp(−Sint) in this approximation is merely the path ordered product of link
variables Uµ around the closed loop C (With a→ 0 in (33) since we are in the continuum limit). This
is the Wilson loop WC , given by 3

WC [U ] =
∏
l∈C

nµl Uµ (55)

When we put the theory on the lattice, the link variables will be the basic gauge field variables, so
WC will be (relatively) easy to calculate. We can also recognize that the plaquette is the Wilson loop
around an elementary square on the lattice.

3See [6] p.491 for more details on the Wilson loop.
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Figure 3: Wilson loop for quark-antiquark potential.

Using our results in (50) gives

lim
T→∞

(
lim

mQ→∞
G(~x, ~y, ~x′, ~y′, T )

)
= lim

T→∞
W (R, T ) ≡

∫
DUDψDψ̄WC [U ]e−SG[U ]−SF [ψ,ψ̄,U ]∫
DUDψDψ̄e−SG[U ]−SF [ψ,ψ̄,U ]

(56)

where we have now implicitly put in the form of Z. By comparison to (49), we can identify the
interaction energy of the quark-antiquark pair in their ground state E0, or in other words the quark-
antiquark potential, as

E0(R) = − lim
T→∞

1

T
lnW (R, T ) (57)

We now have our prescription for calculating the quark-antiquark potential. One caveat is that E0

in (57) also contains contributions from R-independent quark self-energies that must be subtracted
to find the potential.4

The last step needed before we perform the numerical calculation is to deal with the off-shell
virtual quarks. We can perform the same integration over the Grassmann valued fields ψ and ψ̄ as
done in (28), but with Knm now given by (34), to give

lim
T→∞

W (R, T ) =

∫
DUWC [U ]e−SG[U ]+ln(det(K[U ]))∫
DUe−SG[U ]+ln(det(K[U ]))

(58)

While det(K[U ]) is difficult to calculate, it can be done with Monte Carlo methods. W (R, T ) in (58)
is now only a function of the link variables Uµ and the integral can be performed by Monte Carlo
Markov chains (taking T to be a finite large number with T � R). The result of such a calculation
is shown in Fig. 4

4See [7] p.111 for details.
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Figure 4: Static quark-antiquark potential calculated from lattice QCD with comparison to string
model. From: J. Garden et al. (UKQCD collaboration) Nucl. Phys. Proc. Suppl. 83, 165 (2000).

The points from the numerical lattice calculation agree reasonably well with the relation E0(R) =
C + σR − α/R, shown in Fig. 4, where C, σ and α are constants. From the plot, we can see
that at small R the potential act like a Coulombic potential and at large R the potential increases
approximately linearly with R. This implies that QCD predict that for large separations, the colour
fields do not spread out and are confined to a tube or ‘string’ like region between quarks (accordingly,
σ is known as the string tension). We expect that once R is increased to a point where the inter-quark
energy is higher than the energy required to make another bound quark-antiquark state between the
quarks, this quark-antiquark pair will be formed, thereby ‘breaking’ the string. The lattice calculation
performed gives a quantitative prediction of confinement in QCD.

6 Hadron Masses

An important part of testing QCD is calculating the masses of hadrons and comparing these to
measured values. This is a low-energy QCD calculation and thus is an important case to study with
lattice QCD.

The method to calculate hadron masses is very similar to the quark-antiquark potential calculation.
First, operators O and O† will be constructed so that they annihilate and create the particle state
we wish to examine. The correlation function 〈0|O(T )O†(0)|0〉, where |0〉 is again the ground state of
the system, will be calculated by inserting a complete set of energy eigenstates. The limit T →∞ is
then taken, so that in this limit 〈0|O(T )O†(0)|0〉 is given by (48), but with |x〉 → |0〉 and 〈x′| → 〈0|
in this situtation, so that

lim
T→∞

〈0|O(T )O†(0)|0〉 → Ce−E0T (59)

where C is a constant. Therefore, by studying the correlation function 〈0|O(T )O†(0)|0〉 at large T ,
we can extract the ground state energy E0

13



The first task is to construct the appropriate operators that create and annihilate the valence
quarks that comprise the hadron whose mass we wish to calculate. To do this, we will construct
Dirac bilinears ψ̄Γψ that have the same quantum numbers (parity, charge, spin) as the particle under
consideration. The transformation properties of the Dirac bilinears ψ̄Γψ under C and P ,5 as well as
its spin J , are listed in Table 1

Bilinear Γ J P C
Scalar 1,γ4 0 1 1
Vector γi, γ4γi 1 -1 -1
Tensor γiγj 1 1 -1
Pseudo-vector γiγ5 1 1 1
Pseudo-scalar γ5, γ4γ5 0 -1 1

Table 1: Spin and transformation under P and C of Dirac bilinears.

For example, the pions and η-meson have quantum numbers J = 0, P = −1, and C = 1, so their
operators will be comprised of pseudo-scalar bilinears as

Oπ+ = d̄γ5u

Oπ− = ūγ5d

Oπ0 =
1√
2

(ūγ5u− d̄γ5d)

Oη =
1√
2

(ūγ5u+ d̄γ5d) (60)

where u and d are the spinors for the up and down quarks of the same colour, respectively, and we
have neglected the contribution of the s-quark in the η-meson for this example. Baryon operators can
be formed in a similar manner, but are slightly more complicated.6

We can compute the correlation function in (59) with a meson operator of the form OM = f̄1Γf2,
where f1 and f2 are the spinors for the two fermions comprising the meson, by first integrating over
the Grassmann fields (denoted by 〈. . .〉F ) by using Wick’s theorem, which yields7

〈0|OM(xn)O†M(xm)|0〉F = −tr
[
Γ(Kf2

nm)−1Γ(Kf1
mn)−1

]
(61)

where (Kf
nm)−1 is the propagator for the Wilson’s fermion f (the inverse of (34)). From (61), we

can see that the correlator in (59) will involve propagating the fermion f1 from point xn to xm and
fermion f2 in the opposite direction, which is depicted schematically in Fig.5a. A term that propagates
a fermion from one place in spacetime to another, as in (61), is referred to as a connected piece.

The correlator for a meson state with operator of the form OM = 1/
√

2(f̄1Γf1 ± f̄2Γf2), such as
the operator for neutral pion or the η-meson, can be found by using the same procedure as above,
which yields

〈0|OM(xn)O†M(xm)|0〉F = −1

2
tr
[
Γ(Kf1

nm)−1Γ(Kf1
mn)−1

]
+

1

2
tr
[
Γ(Kf1

nn)−1
]

tr
[
Γ(Kf1

mm)−1
]

± 1

2
tr
[
Γ(Kf1

nn)−1
]

tr
[
Γ(Kf2

mm)−1
]

+ f1 ↔ f2 (62)

5See [6] p.65 for derivation of transformations under C and P .
6See [3] p.129 for the formation of baryon operators.
7See [3] p.127 for details of the intergration.
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This correlation function contains connected pieces as well as terms that propagate fermions from a
point back to the same point, seen in Fig.5b, referred to as disconnected pieces. In the case where we
take f1 and f2 to have the same mass, as when considering an exact isospin symmetry, Kf1

mn = Kf2
mn

since Kf
mn only differs between fermions by their mass. In this case, the disconnected terms in (62)

cancel for a meson that has the operator OM = 1/
√

2(f̄1Γf1 − f̄2Γf2), like the neutral pion, which is
the Iz = 0 component of the iso-triplet pion state.

Figure 5: (a) Connected piece of a meson correlator (b) Disconnected piece of a meson correlator.

The final step in calculating the correlation function is to make the operators states of definite
spatial momentum ~p, which we can do by taking the spatial Fourier transform

O(~p, n4) =
1√
Vsp

∑
~n

O(xn)e−ia~n·~p (63)

where Vsp is the spatial volume of the lattice. The final expression for the correlation function in (59)
is then

〈0|O(~p, an4)O†(~0, 0)|0〉 =
1√
Vsp

∑
~n

e−ia~n·~p 〈0|O(a~n, an4)O†(~0, 0)|0〉 (64)

where
〈0|O(xn)O†(xm)|0〉 = 〈〈0|O(xn)O†(xm)|0〉F 〉G (65)

where 〈. . .〉G denotes the integration over the gauge fields (i.e. link variables). By setting ~p = 0,
one can use (64) to calculate the decay of this solution with increasing T = an4 and can extract the
ground state energy, in this case the mass of the particle, by comparison to (59). For example, the
correlation function for the π+ meson is

〈0|O(~0, an4)O†(~0, 0)|0〉 =
1√
Vsp

∑
~n

(
− 1

Z

∫
DUe−SG[U ]det(Ku

n0)det(Kd
n0)tr

[
γ5(Ku

n0)−1γ5(Kd
0n)−1

])
(66)

where

Z =

∫
DUe−SG[U ]det(Ku

n0)det(Kd
n0) (67)

Results of lattice calculations can be seen in Table 2 for various hadrons, which agree with exper-
imental values.
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Particle Mass (lattice calculation), MeV Mass (experiment), MeV
p 920±100 938
ρ 730±90 770

Σ0 1176±22 1193
∆0 1257±36 1232

Table 2: Hadron masses from lattice calculations. p and ρ masses calculated in [8] and Σ0 and ∆0

masses calculated in [1].
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