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1 Dealing with Quantum Corrections

Most of the calculations in this course will be strictly at tree-level. This aproximation gives
a good qualitative description of the electromagnetic and weak interactions, but it fails very
badly for the strong force. Before moving on to discuss the theory of the strong force, QCD,
we will therefore spend a bit of time discussing how to think about loop corrections in a
quantum field theory. 1 By expanding in powers of ~, one can show that these correspond
to quantum corrections to the field theory [1].

To illustrate our arguments, we will focus on the specific and relatively simple field theory
defined by the Lagrangian

L =
1

2
Z0(∂φ)

2 − 1

2
m2

0
φ2 − λ0

4!
φ4. (1)

Even though we choose this specific theory, our arguments will generalize (possibly with
some minor complications) to other more general theories.

Loop corrections can become slightly complicated because they seem to involve ultra-
violet divergences. These arise from summing over all intermediate virtual momentum
states, including very high momentum modes, that contribute to the quantum mechanical
amplitude [2, 3]. The presence of infinities certainly looks bad, but they don’t have to
spoil the predictivity of the quantum field theory. The modern point of view is that these
apparent infinities just imply that the theory we started with does not work all the way
up to arbitrarily high energies. Instead, some other theory should kick in. In the Standard
Model (SM), for example, we expect quantum gravity to become important at E ∼ MPl.
Thus, as relatively low-energy observers, we should not take the apparent divergences in
loop amplitudes too seriously. Rather, we should identify them with finite but unknown
contributions from unknown UV physics.

Trading infintity for finite-but-unknown may not sound like much, but at least it gives
us license to manipulate the would-be divergences. In a renormalizable field theory there are
finitely many, N say, fundamental “divergences”. This means that we can fix the values of
the N unknown quantities by making N observations and comparing them to the predictions
of the theory. Once we have done this, we can make unambiguous predictions for all other
observables in the theory.

In the sample theory of Eq.(1) there are three fundamental divergences. We will regulate
them schematically by imposing a large-momentum cutoff Λ that is very large compared to

1Everything in this section is highly schematic. To get a more accurate story, you should take a full
course in QFT and read the texts listed among the references.
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the energies we are testing the theory at. By dimensional analysis, the structure of quantum
corrections is

2-point : p2
[

A1 ln

(

Λ2

app2 + amm2

)

+ A2

]

−
[

B1Λ
2 +B2 ln

(

Λ2

bpp2 + bmm2

)

+B3

]

(2)

4-point : C1 ln

(

Λ2

cpp2 + cmm2

)

+ C2

The coefficients of all three corrections are functions of the coupling λ0 and must vanish in
the limit λ0 → 0, where the theory reduces to a free scalar theory.

An obvious observable in the theory of Eq. (1) is the cross-section σ(φφ → φφ). The
amplitude (at one-loop order) is given by

−iM = −iλ− i

[

C1 ln

(

Λ2

cpp2 + cmm2

)

+ C2

]

(3)

At one-loop order, both C1 and C2 are proportional to λ2
0
. Squaring this gives the cross-

section. We can fix the value of λ0 by measuring this cross-section at the CM energy s = p2,
and also fix the mass and field normaliztion by measuring the physical mass value. This
then allows us to predict the cross-section at different energies. We find (schematically)

σ(p′
2
) = σ(p2) + 2C̃1 ln

(

c̃pp
2 + c̃mm

2

c̃pp′
2 + c̃mm2

)

. (4)

All the dependence on the unkown UV physics has cancelled out when we write an ob-
servable in terms of the other reference observables. Note that the coefficients here are
slightly different from those in the vertex correction since we also have take into account
wave function factors in computing the cross-section. However, all the coefficients here are
calculable order-by-order in perturbation theory.

It helps to be a bit more systematic about dealing with the ersatz divergences. For this,
it is often useful to rewrite things in terms of an effective action with finite couplings [2, 3].
For this, let us also define new variables according to

Z0 = (Z − δZ), m2

0
= (m2 − δm2), λ0 = (λ− δλ). (5)

The idea is to now compute with Z, m2, and λ, and treat the counterterm δ’s as higher-order
corrections that we use to absorb the dependence on the cutoff Λ. For example, the 4-point
function becomes

4-point = −iλ− i

[

C1 ln

(

Λ2

cpp2 + cmm2

)

+ C2

]

+ iδλ, (6)

with the calculable coefficients such as C1 now being functions of λ rather than λ0. Thus,
we can remove the Λ dependence by choosing

δλ = C1 ln

(

Λ2

µ2

)

, (7)
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where µ is an unspecified renormalization scale with dimensions of mass. It is needed to
make the argument of the logarithm dimensionless. With this choice, the 4-point function
becomes

−i
[

λ+ C1 ln

(

µ2

cpp2 + cmm2

)

+ C2

]

(8)

There is now no explicit dependence on the UV cutoff Λ, but we do have a new dependence
on the unspecified parameter µ. (Recall as well that the coefficients are now functions of λ
rather than λ0.) We can similarly remove the dependence on Λ in the 2-point function by
taking

δZ = A1 ln

(

Λ2

µ2

)

, δm2 = B1Λ
2 +B2 ln

(

Λ2

µ2

)

. (9)

The procedure described above, of splitting the bare Lagrangian parameters into finite
couplings and counterterms, is called renormalized perturbation theory [3]. We have effec-
tively hidden the unknown UV dependence within the finite parameters λ, m2, and Z. These
parameters are just a useful set of finite intermediate variables with which to express the
quantum-corrected n-point functions. In particular, they are not physical since they depend
on the unphysical renormalization scale µ and the choice of counterterms implicit in their
definition is not unique.2 To see the implicit dependence of λ, m2, and Z on µ, notice that
the original Lagrangian parameters are µ-independent, so the dependence on µ between the
couplings and the counterterms must match via Eq. (5).

So how do we make sense of this result? Just like before, to obtain predictions for
observables we must take three input observables to fix the values of λ, Z, and m2 (for
some spcified value of µ2). Having done this, we can go and make predictions for other
observables. These observables must be independent of µ. This is nearly identical to what
we did previously to get rid of the cutoff dependence by always writing observables in terms of
other observables. However, this change of parameters to the renormalized (but µ-dependent)
set we are promoting turns out to be very useful. We can choose µ to be whatever value
we like. In particular, when making predictions for observables at momenta |p2| ≫ m2,
the choice of µ2 ∼ p2 minimizes the logarithmic correction in Eq. (8). This improves the
convergence of the perturbative expansion, and lets us identify λ(µ2 ∼ p2) with the physical
scattering amplitude up to rescaling by Z and small perturbative corrections. Put another
way, a good choice of µ2 makes the parameters we are using “close” to what we would identify
as the physical couplings and masses. On the other hand, setting µ2 very different from p2

can lead to a poor convergence of the perturbative expansion, even for small λ(µ), due to a
large logarithmic enhancement of the coefficients of the pertubative expansion.

These properties motivate us to put together a renormalized effective action Γ[ϕ]:3

Γ[ϕ] =

∫

d4x

[

1

2
Z(µ)(∂ϕ)2 − 1

2
m2(µ)ϕ2 − λ(µ)

4!
ϕ4 + (non-local terms)

]

. (10)

2The choice made here, where we only remove the divergence and nothing else, is called minimal

subtraction. Another choice would be to also cancel off some of the finite pieces such as C2.
3The full definition is Γ[ϕ] =

∑

∞

n=0
1
n!

[∫
∏

n

i=1 d
4xi ϕ(xi)

]

Γ(n)(x1, . . . , xn), where Γ(n) is the n-point
truncated 1PI renormalized Green’s function. Note that this full object is highly non-local [2].
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The point of the effective action is that if you compute with it at tree-level, you get the full
quantum-corrected n-point 1PI truncated Green’s functions. The non-local terms in this
expression generate the explicitly p2-dependent parts of the full quantum-corrected n-point
functions discussed above. The non-local terms will be relatively small provided λ is small
and we choose µ in a clever way. For processes characterized by the momentum scale p2, the
clever choice is µ ∼

√

|p2|. In this case the quantities

λ̃(µ) = λ/Z2, m̃2(µ) = m2/Z, (11)

will be “close” to the physical coupling and mass.

If we understand a theory at one energy scale, we can extrapolate its behaviour to other
energy scales. A reasonable approximation to this can be had from figuring out how λ and
m2 shift with changing µ. The evolution of these couplings with µ goes by the name of the
renormalization group. Let us define

γ ≡ −µ

Z

dZ

dµ
= −d lnZ

d lnµ
(12)

βλ ≡ d(λ/Z2)

d lnµ
(13)

For the example given above, we have 0 = d(Z − δZ)/dµ, which yields

γ = 2A1. (14)

Similarly,

βλ = −2C1 + 4λ̃A1, (15)

and

dm̃2

d lnµ
= −2B2 + 2m̃2A1. (16)

These are differential equations in λ̃ and m̃2. By solving them we can extrapolate the theory
to different energy scales without running into dangerously large logarithms.

Before moving on, let us mention a second variety of effective action. What we have
described above is the 1PI effective action, and it is a generator of 1PI matrix elements that
include quantum corrections from all energy scales. There is also the Wilsonian effective
action that only has corrections from high-energy physics built-into it [2]. The Wilsonian
effective action consists of an action together with an explicit UV cutoff. We write

Seff(Λ) =

∫

d4x Leff (Λ). (17)

When computing with this action, it is understood that any would-be divergences are to
be cut off at the scale Λ. The effective Lagrangian contains the usual kinetic, mass, and
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interaction terms, but it can (and usually does) also contain higher dimensional operators
suppressed by powers of Λ. For example, in a real scalar theory one might have

−Leff ⊃ c1
Λ2

(∂φ)3 +
c2
Λ2
φ6 + . . . (18)

In general, all possible terms consistent with the symmetries of the theory can appear. This
leads to a non-renormalizable theory, and we will describe it can still be predicitive a bit later.
The interesting thing to look at with the Wilsonian effective action is how the coefficients of
the operators in the theory change as we lower the cutoff Λ. Physically, this corresponds to
sequentially integrating out the effects of high-energy physics. This gives a slightly different
realization of the renormalization group compared to what we had earlier.

2 Anomalies

A surprising result of quantizing certain field theories is that quantum corrections sometimes
explicitly break a symmetry of the classical Lagrangian. When this happens, the symmetry
is said to be anomalous and the theory is said to have an anomaly [2]. Anomalies are an
interesting and important feature of quantum field theories, and it would be easy to spend a
whole course discussing them. Due to lack of time, we will only cover a few of the essential
aspects of anomalies as they relate to the SM.

In formulating a quantum field theory, one typically needs both a Lagrangian to define
the interactions and a procedure for regularization and renormalization to deal with apparent
infinities. Anomalies arise when it is not possible to regularize/renormalize the theory in
a way to preserves a classical symmetry of the Lagrangian. The presence of an anomaly
can be deduced by computing the quantum expectation value of an operator containing the
divergence of the classical Noether current:

〈O ∂µj
µ〉 6= 0, (19)

where O is some operator in the theory.

Chiral fermions can be a source of anomalies in four dimensions. Consider a theory
with left-handed fermions ψLi

and right-handed fermions ψRj
, a global symmetry G, and an

Abelian gauge symmetry H . Let’s assume the LH fermions have charges QG
Li

and QH
Lj

under

these groups and the RH fermions have charges QG
Rj

and QH
Rj
. The Noether current for the

global symmetry G is

jGµ =
∑

i

QG
Li
ψ̄Li

γµψLi
+
∑

j

QG
Rj
ψ̄Rj

γµψRj
. (20)

One can show that no matter how one regularizes the theory (in a Lorentz-invariant way),
the expectation of the divergence of this current with a pair of gauge bosons is non-zero up
to an overall coefficient equal to

〈AµAν ∂
λjGλ 〉 ∝

∑

i

(QH
Li
)2QG

Li
−
∑

j

(QH
Rj
)2QG

Rj
. (21)
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Figure 1: Fermion triangle diagram contributing to a gauge theory anomaly.

Unless this combination of charges vanishes, the expectation value is non-zero and the global
symmetry G is anomalous. Note that it does vanish automatically if the theory is non-chiral,
with all the LH and RH fermions coming in pairs with equal charges. Let us also mention
that if we were to write all the SM fermion reps in terms of 2-component LH spinors there
would be no pesky relative minus sign in Eq. (21). It is straightforward to generalize this
result to non-Abelian symmetries, and we will do so below.

An anomaly in a global symmetry leads to interesting physical effects in the theory.
However, an anomaly in a gauge symmetry would be disastrous since it would lead to
a distinction between field configurations that are supposed to be physically equivalent.
Therefore an important consistency condition for gauge theories with chiral fermions is that
the gauge symmetries (treated as classical global symmetries) be anomaly-free. A sufficient
condition for this to occur is that the sum of all fermion-loop triangle diagrams with three
external gauge boson legs vanish – see Fig. 1. These diagrams are proportional to anomaly
coefficients which depend on the chiral fermion representations involved.

For the SM, the non-trivially vanishing anomaly coefficients for all the possible anomalies
in the theory are:

SU(3)3c ∝
∑

L

tr(tac t
b
ct

c
c)− (L→ R) (22)

SU(3)2c × U(1)Y ∝
∑

L

tr(tac t
b
cY )− (L→ R) (23)

SU(2)3L ∝
∑

L

trL(t
p
Lt

q
Lt

r
L)− (L→ R) (24)

SU(2)2L × U(1)Y ∝
∑

L

trL(t
p
Lt

q
LY )− (L→ R) (25)

U(1)3Y ∝
∑

L

Y 3 − (L→ R) (26)

(grav)2U(1)Y ∝
∑

L

Y − (L→ R) (27)

Here, the sum
∑

L runs over all left-handed fermion reps, and similarly for R. Sometimes you
will see

∑

L(...) = trL(...). These anomaly coefficients are just the group theoretic factors
associated with the corresponding triangle loops weighted by a relative factor of minus one
for chirality. Note that mixed anomalies with a single non-Abelian factor like SU(3)2cSU(2)L
or SU(2)LU(1)Y vanish automatically since they all involve the trace of a single non-Abelian
generator. The last condition is only needed if we want to eventually couple the theory in a
consistent way to gravity (which we do).
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e.g. 1. SU(3)2cU(1)Y anomaly cancellation in the SM.

The SU(3)c × U(1)Y anomaly coefficient is

A331 = trL(t
a
c t

b
cY )− (L→ R) (28)

The L part of the trace gets contributions from Q. For this, there are two 3 reps of SU(3)c,
one each for the two SU(2)L components uL and dL, and both have hypercharge Y = 1/6.
The R part of the trace comes from uR and dR which are both 3̄ reps of SU(3)c and have
hypercharges Y = 2/3 and −1/3. Putting things together, and using tr(ta

3
tb
3
) = δab/2, we

find

A331 = ng

[(

1

2
× 2× 1

6

)

−
(

1

2
× 2

3
− 1

2
× 1

3

)]

= 0, (29)

where ng = 3 is the number of generations. This vanishes - Hooray! You will get to check
that all the other potential SM gauge anomalies vanish in the homework.

3 Effective Field Theories

Sometimes less is more, and this is certainly true of quantum field theories. The modern
view of quantum field theories, and the SM in particular, is that they are not fundamental
theories of Nature [4]. Instead, we regard them as effective field theories that only provide
an approximate description of how things work up to finitely large energies [5, 6, 7]. This
point of view provides a new (and arguably more physical) perspective on the procedure of
renormalization, and is often necessary to maintain a reliable perturbative expansion. It also
frequently makes calculations much easier.

The main idea underlying EFT is that one should only keep around those degrees
of freedom that can be produced on-shell given the range of energies one is studying.
Correspondingly, the only dynamical fields in an EFT are those corresponding to on-shell
particles. In this sense, an EFT has a built-in UV cutoff corresponding to energies large
enough to produce new particles on shell. An EFT with massive particles also has a built-in
IR cutoff at energies on the order of their masses. At energies below these masses, our EFT
philosophy tells us to remove the massive particles to form an even simpler EFT.

All this stuff about EFTs will probably make more sense to you after seeing a specific
example. A nice case is given by the weak interactions at relatively low energies, E ≪
mW , mZ . Consider the decay of a muon by way of a W− to νµ en̄ue. The amplitude for this
is

−iM = ūe(−i
g√
2
γµPL)vν̄e ūνµ(−i

g√
2
γνPL)uµ

i

p2 −m2

W

(

−ηµν + pµpν/m
2

W

)

(30)

= −i g2

2m2

W

(

1

1− p2/m2

W

)

(ηµν − pµpν/m
2

W ) ūeγ
µPLvν̄e ūνµγ

νPLuµ

Now, the momenta involved here are all less than the mass of the muon, which is a lot smaller
than the mass of the W . Thus, we can expand this amplitude in powers of pµpν/m

2

W , and
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it is a good approximation (up to corrections of size p2/m2

W ) to keep only the leading term.
In this approximation, the amplitude becomes

−iM ≃ i
g2

2m2

W

(ūeγ
µPLvν̄e)

(

ūνµγµPLuµ
)

. (31)

It isn’t hard to notice that exactly the same amplitude could have been obtained if we had
started from a Lagrangian containing the interaction

L ⊃ g2

2m2

W

(ēγµPLνe) (ν̄µγ
µPLµ) . (32)

Higher-order terms in the expansion could also be reproduced by including additional deriva-
tive operators.

This approximate equivalence motivates us to construct an EFT for the weak interactions
at low energy which does not contain theW± or Z0 vector bosons explicitly. Instead, we only
keep the light fermions and include new interactions in the low-energy effective Lagrangian
of the theory to account for the leading effects of the massive vectors, one of these being
the operator of Eq. (32). Interactions mediated by exchanging a Z0 would also give rise to
operators such as

cqqL
m2

W

(q̄γµPLq)(q̄
′γµPLq

′),
cqqR
m2

W

(q̄γµPRq)(q̄
′γµPRq

′), . . . (33)

The procedure of connecting a more complicated theory valid at high energies to the low-
energy EFT is called matching. The matching given in Eqs. (32, 33) is accurate up to
corrections on the order of p2/m2

W . The accuracy of the matching can be further improved
to the order of (p2/m2

W )n (n > 1) by including additional higher-derivative operators with
even more powers of suppression by m2

W to reproduce the subsequent terms in the expansion
of the W propagator. It should also be clear that the EFT ceases to be useful for larger
momenta p2 ∼ m2

W because the expansion in powers of p2/m2

W no longer converges quickly.

In general, we expect the matching procedure to produce every possible higher-dimensional
operator consistent with the symmetries of the theory. If the full high-energy ultraviolet
completion theory is known and is perturbative, as in the case of the electorweak interactions,
we can do this matching explicitly in perturbation theory. More generally, a prescription
for matching at the leading order in both the momentum and loop expansions is to simply
replace the heavy fields that are being integrated out of the theory by the solutions of their
classical equations of motion with all derivatives set to zero [6]. We illustrate this below.

e.g. 1. Integrating out a massive scalar or fermion.

Consider the theory

L = |∂φ|2 −m2|φ|2 +
2

∑

i=1

ψ̄i(iγ
µ∂µ −Mi)ψi − yφψ̄1ψ2 − y∗φ∗ψ̄2ψ1. (34)
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The classical equations of motion are:

0 = (∂2 +m2)φ+ yψ̄1ψ2

0 = iγµ∂µψ1 −M1ψ1 − yφψ2 (35)

0 = iγµ∂µψ2 −M2ψ2 − yφ∗ψ1

We can look at the resulting EFTs in various limits for the relative masses of M1, M2, m
2.

For m2 ≫M1, M2 we can integrate out the φ and φ∗ fields. Following our leading-order
prescription described above, this yields

φ = − y

m2
ψ̄1ψ2. (36)

Plugging this back into the Lagrangian, we get the effective Lagrangian

Leff =

2
∑

i=1

ψ̄i(iγ
µ∂µ −Mi)ψi +

|y|2
m2

(ψ̄1ψ2)(ψ̄2ψ1). (37)

You’ll get to work out the cases M1 ≫ m2, M2 and M1 ∼M2 ≫ m2 in the next assignment.

Based on the examples above, it should also be clear that a typical EFT is non-renormalizable.
The presence of operators in the Lagrangian with mass dimension greater than four leads
to an infinite set of independent divergences. Therefore an infinite set of observables would
be needed to renormalize them all. While this might seem to render most EFTs utterly
unpredictive, this is not the case. The divergences appearing in an EFT have a very natural
physical UV cutoff, namely the large mass scale M suppressing the higher-dimensional
operators. As the momentum scale p approaches M , the EFT breaks down anyway (even
at tree-level unless an infinite number of terms are included), and it certainly doesn’t make
sense to work with the EFT at momenta larger than M . From this point of view, the
would-be divergences are no longer actually divergent, but they do reflect an unspecified
dependence on the underlying UV theory.

One way out of this situation would be to simply work with the full ultraviolet theory,
provided it is renormalizable. However, in many cases we only know the low-energy EFT
and not the full ultraviolet completion. Even when we don’t, working within the EFT is
frequently much easier. The trick to handling loops strictly within an EFT is to notice that
the new divergences generated correspond to operators of increasingly higher dimension.
After regulating all the would-be divergences, we can simply ignore all but a finite set of the
operators to any given order in the momentum expansion.

To see how this works in practice, let’s first estimate the size of operators for processes
with a characteristic momentum p. Ignoring light masses, the only relevant scales are then
p and the large UV mass M appearing in higher-dimensional operators. This leads to (at
tree-level)

(∂φ)2 ∼ p4, m2φ2 ∼ m2p2, φ4 ∼ p4,
φ6

M2
∼ p6/M2 (38)

ψ̄iγ · ∂ψ ∼ p4, mψ̄ψ ∼ mp3,
1

M2
(ψ̄ψ)(ψ̄ψ) ∼ p6

M2
. (39)
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Basically every power of a light field yields a factor of pn, where n is the mass dimension of
that field. Thus, kinetic and dimensionless terms give a baseline operator size of order p4.
Going to lower momentum, we see that mass terms become increasingly important relative
to the kinetic terms while higher-dimensional operators become more and more suppressed.

The trick to coming to terms with the non-renormalizability of EFTs is to realize that,
in practice, we are only able to measure things to a finite degree of accuracy. Let’s say we
have a fractional accuracy ∆X/X , for some observable X . If the typical momentum scale
for this measurement is p, we can ignore any corrections of size smaller than (p/M)N <
∆X/X . Thus, in making predictions for X to the required level of accuracy, we can
ignore all operators suppressed by powers n > N . As a result, we don’t care that the
non-renormalizability of the theory leads to new “divergences” in operators of dimension
greater than N . Only a finite set of operators actually matter when computing to the
specified level of accuracy, and we can simply ignore all the rest to an acceptably good level
of approximation. Therefore only a finite set of observables are needed to specify the relevant
parameters in the theory (based on low-energy data alone), and the theory is predictive for
all other observables to the desired level of accuracy.
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