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1 Flavour in the Standard Model

In our previous discussion of the SM we did not say anything about the three families of
quarks and leptons. There is a very interesting story here, and we turn to it now. The SM
contains three copies of all the fermion representations that we call families, generations, or
flavours. They are

Quarks :

{

uL,R cL.R tL,R Q = +2/3
dL,R sL,R bL,R Q = −1/3

(1)

Leptons :

{

νeL νµL ντL Q = 0
eL,R µL,R τL,R Q+−1

(2)

The first column corresponds to the first generation (or family), the second column to the
second generation, and the third column to the third. The elements of each generation have
identical sets of SU(3)c × SU(2)L × U(1)Y quantum numbers (i.e. representations) but, as
we will see shortly, differ greatly in their masses.

Instead of writing out all three generations explicitly, it is much easier to use a condensed
notation with a generation index A = 1, 2, 3. For example, we will write uRA

where

uRA=1
= uR, uR2

= cR, uR3
= tR, (3)

and similarly for the other states. Since all three generations have identical quantum
numbers, we can choose our field variables such that all the gauge-covariantized kinetic
terms are diagonal in generation space.1 That is

Lgauge ⊃ Q̄LA
iγµDµQLA

+ ūRA
iγµDµuRA

+ . . . (4)

This choice of field variables is sometimes called the gauge eigenbasis. We will always
implicitly start off with this basis and work from there.

Going back to the Yukawa interactions, we see that gauge invariance allows them to
have a non-trivial family-mixing structure. Put another way, the most general set of gauge-
invariant Yukawa terms we can write (taking the generational structure into account) is

−LY ukawa = yuAB
Q̄LA

Φ̃ uRB
+ ydAB

Q̄LA
Φ dRB

+ yeAB
L̄LA

Φ eRB
+ (h.c.) (5)

= (v + h/
√
2)ūLA

yuAB
uRB

+ (v + h/
√
2)d̄LA

ydAB
dRB

+ (v + h/
√
2)ēLA

yeAB
eRB

+ (h.c.)

= (v + h/
√
2) ūLyuuR + (v + h/

√
2) d̄LyddR + (v + h/

√
2) ēLyeeR + (h.c.)

1If they aren’t to begin with, just make rotations and rescalings in generation space such that they are.

This is consistent with gauge invariance since these rotations only mix fields that transform under identical

gauge representations.
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In the third line we have implicitly contracted the generation indices and we have written
this expression in terms of matrices and row and column vectors in generation space.

The portions of the expression above involving v are mass matrices for the up- and
down-type quarks and the charged leptons. In general they are non-diagonal if the Yukawa
couplings tie different generations together; more precisely, they are 3× 3 complex matrices.
To do perturbation theory, we should diagonalize them. Any complex matrix can always
be diagonalized by a pair of unitary matrices. To achieve this, define a new set of fields
according to

uLA
= V L

uAB
u′LB

, uRA
= V R

uAB
u′RB

dLA
= V L

dAB
d′LB

, dRA
= V R

dAB
d′RB

(6)

eLA
= V L

eAB
e′LB

, eRA
= V R

eAB
e′RB

νLA
= V L

νAB
ν ′LB

,

Here, V L,R
f are all unitary matrices. We can choose them such that they will bi-diagonalize

the Yukawa interaction matrices. That is

V L†

u yuV
R
u =

1

v
diag(mu, mc, mt)

V L†

d ydV
R
d =

1

v
diag(md, ms, mb) (7)

V L†

e yeV
R
e =

1

v
diag(me, mµ, mτ )

In terms of the primed fields, the Yukawa interactions containing the mass terms are now
diagonal. For example

−LY ukawa ⊃ (v + h/
√
2) uLyuuR

= (v + h/
√
2) ū′L (V

L†

u yuV
R
u ) u′R (8)

= (1 + h/
√
2v) (mu ū

′
Lu

′
R +mc c̄

′
Lc

′
R +mt t̄

′
Lt

′
R) .

Since these field transformations are unitary, the fermion kinetic terms retain their generation-
diagonal form. For instance,

Q̄Liγ
µ∂µQL → ū′LV

L†

u iγµ∂µV
L
u u

′
L + d̄′LV

L†

d iγµ∂µV
L
d d

′
L (9)

= Q̄′
Liγ

µ∂µQ
′
L

These keep the same form because the kinetic terms only have LL and RR pieces and do
not mix the upper and lower components of the SU(2)L doublets. As a result, we always

get the combination V L,R†

f V L,R
f = I. The primed field basis we have defined therefore has

canonical kinetic terms and diagonal masses, and is therefore a good basis to use for doing
perturbation theory. This basis is often called the mass eigenbasis.

Let us turn next to the couplings of the primed fields to the bosons of the theory. By
construction, or from Eq. (8), we see that the couplings of the primed fields to the Higgs boson
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h are all generation-diagonal. The couplings of fermions to the photon Aµ, the massive Zµ
vector, and the gluon Ga

µ are also diagonal in generation space. This comes about for exactly
the same reason that the fermion kinetic terms remain diagonal - the unitary transformations
cancel each other out. Things are more interesting for the couplings of fermions to the massive
W±
µ vectors. Here we have

−L ⊃ g√
2
ūLγ

µW+
µ dR +

g√
2
ν̄Lγ

µW+
µ eR + (h.c.) (10)

=
g√
2
ū′L(V

L
u

†
V L
d )γ

µW+
µ d

′
R +

g√
2
ν̄ ′L(V

L†

ν V L
e )γµW+

µ e
′
R + (h.c.)

The unitary generation-space matrix appearing in the quark term is called the Cabibbo-
Kobayashi-Maskawa (CKM) matrix,

V (CKM) = V L
u

†
V L
d =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (11)

This represents a physical cross-generational mixing. For the leptons, on the other hand, we
can always choose the neutrino mixing matrix V L

ν = V L
e without changing anything else in

the SM Lagrangian.2 Thus we can choose our field variables such that the couplings of the
W to leptons remains generation-diagonal. The only physical source of flavour mixing in the
SM is therefore the CKM matrix.

Mixing of generations is observed experimentally and seems to be consistent with the
CKM picture. Numerically, the magnitudes of the entries in the CKM matrix are

|V (CKM)| ≃





0.9738 0.226 0.0043
0.23 0.96 0.042
0.0074 . .



 . (12)

The number of decimal places here corresponds approximately to the current experimental
precision.

The Yukawa couplings we began with (in the gauge eigenbasis) in Eq. (5) can be complex.
This leads to complex phases in the CKM matrix. In general, one can write a 3× 3 unitary
matrix in terms of three rotation angles (O(3) ⊂ SU(3)) and six phases. Five of these
phases can be removed by field redefinitions that leave the real, diagonal form of the mass
and kinetic terms unchanged. The remaining phase is physical, and gives rise to observable
CP violation. We will discuss this later on in the course.

2 Computing with the Standard Model

When computing within the SM it is customary to work in the mass eigenstate basis, and
we will follow this custom. To simplify the notation, we will drop the primes on these states

2This would not be true if it were possible to write a mass term for the neutrinos in the SM.
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that we had been using to distinguish them from the gauge eigenstates. It is also customary
to assemble the 2-component SM fermions into 4-component objects. Thus, we write

u =

(

uL
uR

)

, d =

(

dL
dR

)

, e =

(

eL
eR

)

, νL =

(

νL
0

)

. (13)

Since the W and Z vectors coupled differently to the L and R components, we will have to
insert chiral projectors PL and PR into the Feynman rules.

The propagators for the SM fermions and the Higgs boson are the same as we had before
- see Fig. 1. For vectors, the propagators are (for momentum p)

Aµ → Aν :
i

p2
(−ηµν) (14)

Ga
µ → Gb

ν :
i

p2
[

−ηµν + (1− ξ)pµpν/p
2
]

(15)

Zµ → Zν :
i

p2 −m2
Z

(

−ηµν + pµpν/m
2
Z

)

(16)

W±
µ →W±

ν :
i

p2 −m2
W

(

−ηµν + pµpν/m
2
W

)

(17)

The factor ξ in the gluon propagator depends on the choice of gauge and should cancel out
of any physically observable quantity. The W± and Z0 propagators correspond specifically
to our choice of unitary gauge, and they describe the propagation of a massive vector.3

Spin polarization factors for external fermion lines in a Feynman diagram are identical
to those we discussed for QED and general non-Abelian gauge theories. External vector
lines pick up a polarization vector ǫ(p, λ) as shown in Fig. 1, where p is the momentum of
the vector and λ labels the polarization state. Massive and massless vectors have different
numbers of polarization states. The massless photon and gluons have two physical transverse
polarizations. With a massive vector, we can transform to the rest frame in which case the
polarizations coincide with the independent states of a spin-1 system: thus a massive vector
has three distinct polarizations. For example, {ǫµ(p, λ)} = {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}
in the rest frame. Independent of whether a vector is massive or massless, we always have

ǫµ(p, λ) p
µ = 0. (18)

These properties have important consequences for evaluating Feynman diagrams. In many
cases we only care about the unpolarized cross-section, where the final polarizations are
summed over and the initial polarizations are averaged. In both cases one encounters spin

3In other gauges, they can take a different form.
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Figure 1: Feynman rules for the Standard Model.

sums that can be simplified. For the SM vectors, we have

For Wµ, Zµ :
3

∑

λ=1

ǫµ(p, λ)ǫ
∗
ν(p, λ) = −ηµν + pµpν/m

2 (19)

For Aµ :
2

∑

λ=1

ǫµ(p, λ)ǫ
∗
ν(p, λ) = −ηµν + (stuff you can ignore) (20)

For Gµ :
2

∑

λ=1

ǫµ(p, λ)ǫ
∗
ν(p, λ) = −ηµν + (stuff you can’t ignore) (21)

The non-ignorable stuff for the gluon polarization sum is related to the presence of non-
decoupling ghost fields in the theory. In this case, it usually easiest to choose an explicit set
of transverse polarization vectors satisfying4

ǫ(p, λ) · ǫ∗(p, λ′) = δλ,λ′, p · ǫ(p, λ) = 0, (1, 0, 0, 0) · ǫ(p, λ) = 0. (22)

There are lots of interaction vertices in the SM, and they are straightforward to work
out from the Lagrangian. We’ll collect only the fermion-vector couplings here. Comparing
to the general notation in Fig. 1, the fermion-photon vertex for ψ → Aµψ is

V µ = −ieQγµ. (23)

4This choice isn’t unique.
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For the gluon, we have for ψj → Ga
µψi (with i, j being the indices of the SU(3)c rep of the

fermion)

V µ = −igsγµtaij , (24)

where ta is the representation matrix corresponding to the SU(3)c rep of the fermion ψi. For
a trivial representation we have ta = 0 and the vertex vanishes. In the case of the Z0, we
have for ψ → Zµψ

V µ = −iḡγµ
[

(t3 −Qs2W )PL + (0−Qs2W )PR
]

. (25)

The fermion projectors here take into account the different couplings of the Z0 to the left-
and right-handed components of the 4-component fermions we are working with. For the
W±, we have for ψB →W−

µ ψ
′
A (where A, B are the flavour indices of the fermion)

V µ = −i g√
2
γµPLV

(CKM)
AB . (26)

Note that here ψ is the lower component of an SU(2)L doublet while ψ′ is an upper

component. For ψ′
A → W+

µ ψB one gets the same vertex but with V
(CKM)†
AB . Note also

that except for the gluon coupling, the incoming and outgoing colour states at a vector
vertex are the same (so we could have put on colour indices on all the fields with a δij in the
vertex). Similarly, the flavours of the incoming and outgoing fermions are identical except
for the W± couplings and so we have not included flavour indices in the other vertices. The
vertex for a fermion ψ coupling to the Higgs boson is

V = −i mψ√
2v
, (27)

where mψ is the fermion mass. This coupling is also diagonal in colour and flavour space.

e.g. 1.) Amplitude for e+e− → uū via the Z0.
The Feynman diagram for this process is shown below. Following the rules above, we find
the amplitude

−iM = −iḡ2
(

1

p2 −m2
Z

)

(−ηµν + pµpν/m
2
Z)

ū3γ
µ

[

(
1

2
− 2

3
s2W )PL + (0− 2

3
s2W )PR

]

v4 (28)

v̄2γ
ν

[

(
1

2
+ s2W )PL + (0 + s2W )PR

]

u1.

Here, p = (p1 + p2) = (p3 + p4), and the subscripts label the momenta of the spinors (spinor
indices are contracted). Squaring and summing/averaging this amplitude goes through
very much like the e+e− → µ+µ− example we considered earlier for QED. The key
difference is that we almost always want to sum over the colour states of the outgoing
quarks. Since u and ū must carry the same colour index (seeing as the Z0 coupling does

6



not modify colour), this introduces an additional factor of three for the three outgoing
colour states. Note also that the full amplitude for e+e− → uū also gets a contribution
from an intermediate photon. When |p2| ≪ m2

Z the photon contribution dominates by a
factor of nearly m2

Z/|p2|. Indeed, in this case the Z0 contribution is approximated well by
simply replacing the propagator by

(−ηµν + pµpν/m
2
Z)/(p

2 −m2
Z) → ηµν/m

2
Z (29)

This is the form of the vertex one would optain from a point-like interaction coupling four
fermions at once.

Z
e u

up

p

p

1

2

3

4

p−

e+

−

e.g. 2.) W+ → ud̄.
The amplitude for this process is (p1 → p2 + p3)

−iM = −i g√
2
ū2γ

µPLV
(CKM)
ud v3 ǫµ(p, λ). (30)

To get the physical unpolarized rate, we should average over initial states and sum over
final ones. This gives

“|M|2′′ =
1

3

∑

i

∑

λ

∑

s,s′

|M|2 (31)

=
g2

2
|Vud|2

[

2(pµ2p
α
3 + pµ2p

α
3 − p2 · p3ηµα)− 2iǫρµσαp2ρp3σ

]

(−ηµα + p1µp1α/m
2
W )

≃ g2|Vud|2m2
W .

In the first line, the sums run over the colours of the quarks, the polarizations of the initial
W+ (with a 1/3 factor to make it into an average over initial pols), and a sum over final
state spins. In the last line we’ve ignored the u and d masses which are much smaller than
the W mass and correct this result by factors of m2

u,d/m
2
W . In this approximation, the

partial decay width for this channel is

Γ(W+ → ud̄) =
g2

8π
|Vud|2mW . (32)

This is typical for a 2-body decay width - it goes like (mass)(coupling)2/16π up to factors
of order unity.
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