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1 Fun with Fermions

We have been working with scalar, fermion, and vector fields. They correspond to particles
with definite spins. They also form representations of the Lorentz group, which is generated
by the set of boosts and rotations on spacetime.1 Under this group, we have

xµ → Λµ
νx

ν ≡ x′

φ(x) → φ(x′) (1)

ψa(x) → U b
a (Λ)ψb(x

′)

Aµ → Λµ
νA

ν

The fermions we have been using so far have had four components. It turns out that
4-component fermions are a reducible representation of the Lorentz group. They are built
up of two irreducible components: left- and right-handed 2-component fermions. These
two 2-component fermion irreps are the only “s′′ = 1/2 irreps of the Lorentz group. In
the massless case, they correspond to fermions with spins anti-aligned and aligned with the
direction of motion. In some cases, it is easier to work with 4-component fermions, but in
many others 2-component fermions are the more sensible option. We will go over how to
handle 2-component fermions in this section.

In the chiral basis, a 4-component fermion can be decomposed as

Ψ =

(

ψL

ψR

)

= PLΨ+ PRΨ ≡ ΨL +ΨR, (2)

where

PL,R = (1∓ γ5)/2, ΨL =

(

ψL

0

)

, ΨR =

(

0
ψR

)

. (3)

Applying this to the usual fermion bilinears we deal with,

Ψ̄γµΨ = Ψ̄Lγ
µΨL + Ψ̄Rγ

µΨR (4)

as well as

Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL. (5)

We see from this that the kinetic terms keep the L and R components separate while the
mass term we have been using mixes them.

1In four spacetime dimensions there three distinct rotations and three distinct boosts, so this group has
dimension d(G) = 6.
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It turns out to be very useful to develop a specific notation and procedure to handle
2-component fermions [1, 2, 3]. Let’s start with the so-called left-handed irrep. Since these
are two-component objects (like duh), we can write

χ = χα, α = 1, 2. (6)

Under a Lorentz transformation (x→ x′ = Λx),

χα → χ′
α =M β

α (Λ) χβ, (7)

where Mβ
α is an SL(2,C) matrix2

In QFT, we typically start with a classical field theory Lagrangian and use it to develop
the quantum theory. Fermions, even at the classical level, are anti-commuting. That is given
two fermion components χα and ξβ we have

χαξβ = −ξβχα. (8)

Such anti-commuting objects are sometimes called Grassmann numbers.

Given any two 2-component fermions, we can form a Lorentz-invariant object by con-
tracting anti-symmetrically:

ǫαβχβ(x)ξα(x) → ǫαβχβ(x
′)ξα(x

′), (9)

where

ǫαβ =

(

0 1
−1 0

)

= iσ2. (10)

For this reason, it makes sense to define 2-component fermions with a raised index

χα ≡ ǫαβχβ. (11)

With this definition we have

χξ ≡ χαξα = ξχ (Lorentz Invariant) (12)

It also makes sense to define a lowering operation by the inverse of ǫαβ :

χα = ǫαβχ
β (13)

with

ǫαβ =

(

0 −1
1 0

)

= −iσ2. (14)

Note the sign flip here which is chosen to give ǫαλǫλβ = δαβ and ǫαλǫ
λβ = δ β

α .

2SL(2,C) is the group of 2× 2 complex matrices with unit determinant.
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The second 2-component fermion irrep is said to be right-handed (RH). It turns out to
be a complex conjugate rep of the let-handed (LH) irrep. For this reason, given any LH
fermion we can form a RH fermion by

χ̄α̇ ≡ (χα)
†. (15)

The bar on the RH fermion is part of its name, and does not imply any sort of operation
as in the 4-component case. The dot on the RH index of α̇ is to distinguish it from the
undotted LH index α. Similarly, given any RH fermion we can form a LH fermion by

ξβ ≡ (ξ̄β̇)†. (16)

Note that the index raising and lowering operation commutes with conjugation.

With RH fermions we can form the Lorentz invariant quantity

χ̄ξ̄ ≡ χ̄α̇ξ̄α̇ = ξ̄χ̄. (17)

The up-down arrangement of indices is chosen such that

(χ̄ξ̄)† ≡ (χ̄α̇ǫα̇β̇ ξ̄
β̇)† = ǫαβ(ξ̄

β̇)†(χ̄α̇)† = +ξχ. (18)

Note that conjugation reverses the order of the fermions.

A single 4-component fermion is built up from a LH and a RH 2-component fermions.
In general these are different 2-component fermios, and we have

Ψ =

(

χα

ξ̄α̇

)

, (19)

so that

ΨL =

(

χα

0

)

, and ΨR =

(

0
ξ̄α̇

)

. (20)

We also have for the conjugate (in the chiral rep)

Ψ̄ = Ψ†γ0 = (ξα, χ̄α̇) . (21)

It follows that

Ψ̄Ψ = ξχ+ ξ̄χ̄. (22)

Again we see that this term mixes the two 2-component fermions.

To form a kinetic term we need the γ matrices. In the chiral representation we have

γµ =

(

0 (σµ)αα̇
(σ̄µ)α̇α 0

)

, (23)
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where

σµ = (I, ~σ), σ̄µ = (I, −~σ). (24)

This leads to

Ψ̄γµΨ = (ξα, χ̄α̇)

(

0 (σµ)αα̇
(σ̄µ)α̇α 0

)(

χα

ξ̄α̇

)

= χ̄α̇(σ̄
µ)α̇αχα + ξα(σµ)αα̇ξ̄

α̇ (25)

≡ χ̄σ̄µχ+ ξσµξ̄.

As before, this term keeps separate the two 2-component pieces. Both transform as vectors
under the Lorentz group. It also looks like χ and ξ have different kinetic terms. However,
one can show that for any two spinors

χσµξ̄ = −ξ̄σ̄µχ. (26)

After integrating by parts, the kinetic terms for both χ and ξ can therefore be put in the
same form. Along the way, we see that it makes sense to define the canonical kinetic term
for a single 2-component fermion to be

L ⊃ χ̄iσ̄µ∂µχ = χiσµ∂µχ̄. (27)

Note that both χ and χ̄ are needed to obtain a real-valued kinetic term.

So far we have started with 4-component fermions and have expressed them as 2-component
pieces. However, in general we can simply start with some number of 2-component fermions
χi with the free Lagrangian

L =
∑

i

χ̄iiσ̄
µ∂µχi −

1

2

∑

ij

(

mijχiχj +m∗
ijχ̄iχ̄j

)

. (28)

The mass matrix here is complex and symmetric. It is always possible to rewrite this
Lagrangian in terms of 4-component objects; sometimes this is useful and sometimes it isn’t.

A 4-component fermion is said to be Dirac if the spinors making it up are different in
that they aren’t complex conjugates of each other. That is

ΨD =

(

χα

ξ̄α̇

)

, (29)

with (ξ̄α̇)
† 6= χα. A Dirac mass term has the form Ψ̄Ψ = χξ + χ̄ξ̄ and mixes these two

distinct components.

A 4-component fermion is said to be Majorana if the spinors making it up are the same:

ΨM =

(

χα

χ̄α̇

)

. (30)
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Equivalently, Ψ = Ψc where the conjugate spinor is defined (for a general 4-component
fermion) to be

Ψ =

(

χα

ξ̄α̇

)

↔ Ψc =

(

ξα
χ̄α̇

)

(31)

Note that we can also write

Ψc = C(Ψ̄)t, with C = −iγ2γ0 =
(

ǫβα 0

0 ǫβ̇α̇

)

. (32)

A Majorana mass term has the form (Ψc)Ψ = χχ + ξ̄ξ̄, and does not mix different fermion
components. From the point of view of 2-component fermions, all these 4-component
gymnastics are completely silly. A Majorana mass term is just a contraction of the same
2-component object (e.g. χχ) while a Dirac mass term is a contraction of two different
2-component objects (e.g. χξ).

2 Introduction to the Standard Model

We now have all the pieces we need to assemble the Standard Model (SM) [4, 5, 6, 7].
This theory provides an excellent description of the strong, weak, and electromagnetic
forces, and the predictions of the theory are in excellent agreement with a very broad
range of experimental measurements. Gravity is not described by the SM since this force is
exceedingly weak and almost always neglible in particle physics experiments.

The basis of the SM is gauge invariance under the gauge group SU(3)c×SU(2)L×U(1)Y .
Of these factors, SU(3)c corresponds to the strong force, while SU(2)L × U(1)Y combine to
produce the weak and electromagnetic forces. Having fixed the underlying gauge group, all
we need to do is to specify the matter content and the vacuum structure. The fermionic
matter content comes in three identical copies called families. Each family consists of the
following representations under SU(3)c × SU(2)L × U(1)Y :

QL = (3, 2, 1/6) =

(

uL
dL

)

uR = (3, 1, 2/3)

dR = (3, 1,−1/3) (33)

LL = (1, 2,−1/2) =

(

νL
eL

)

eR = (1, 1,−1)

These are each 2-component fermions that we have written in 4-component notation. Note
that these representations do not come in balanced LR and RH pairs, but rather the LH and
RH quark and lepton fields have different gauge charges.3 For QL and LL we have written out

3Fermions with this property are sometimes said to be chiral.
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the SU(2)L components explicitly. The QL, uR, and dR fields transform non-trivially under
SU(3)c and are called quarks, while the SU(3)c-neutral LL and eR fields are called leptons.
Aach quark also has three colour components which we have not written out explicitly. In
addition to three families of fermions, there is also a single Higgs scalar field

Φ = (1, 2, 1/2) =

(

φ+

φ0

)

. (34)

We will write the gauge fields for the SU(3)c × SU(2)L × U(1)Y factors as

Ga
µ ∼ (8, 1, 0)

W p
µ ∼ (1, 3, 0) (35)

Bµ ∼ (1, 1, 0)

Recall that the 8 of SU(3)c is the adjoint, as is the 3 of SU(2)L.

Under SU(3)c × SU(2)L × U(1)Y transformations, a given field ψ transforms according
to

ψir → ψ′
ir ≡ U

(3)
ij U

(2)
rs U

(1) ψjs (36)

= (eiα
atarc )ij (e

iβpt
p
rL )rs (e

iγY + . . .)ψjs.

=
[

δijδrs + iαa(tarc)ijδrs + iδijβ
p(tprL)rs + iδijδrsγ Y

]

ψrs. (37)

That is, ψ carries SU(3)c (i and j) and SU(2)L (r and s) indices, and each of these product
subgroups acts relative to these indices independently. The quantities αa, βp, and γ are the
universal group transformation parameters that apply to all representations. When a field
transforms as a singlet under SU(3)c or SU(2)L, the corresponding representation generators
vanish and we don’t need to include an index for that group on the field. Thus we have

QL = (QL)ir, uR = (uR)i, dR = (dR)i, LL = (LL)r, eR = (eR). (38)

Woohoo!

The SM Lagrangian takes the form

L = Lgauge + LHiggs + LY ukawa. (39)

The gauge piece is completely fixed by gauge invariance:

Lgauge = −1

4
(Ga

µν)
2 − 1

4
(W p

µν)
2 − 1

4
(Bµν)

2

+ Q̄Liγ
µDµQL + ūRiγ

µDµuR + d̄Riγ
µDµdR (40)

+ L̄Liγ
µDµLL + ēRiγ

µDµeR,

where each covariant derivative takes the form

Dµ = ∂µ + igs t
a
rc
Ga

µ + ig tprLW
p
µ + ig′ Y Bµ, (41)
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with tarc the appropriate SU(3)c generators for the coresponding rep (trc = 0 for the trivial
rep), tprL the generators for SU(2)L (trL = 0 for the trivial rep), and Y is the charge of the
field under U(1)Y and is called hypercharge. The Higgs part is

LHiggs =

∣

∣

∣

∣

(

∂µ + ig
σp

2
W p

µ + ig′
1

2
Bµ

)

Φ

∣

∣

∣

∣

2

−
(

−µ2|Φ|2 + λ

2
|Φ|2

)

. (42)

This potential induces spontaneous symmetry breaking whose consequences we will examine
presently. Finally, the third set of terms in the SM Lagrangian corresponds to scalar-fermion
Yukawa interactions of the form

LY ukawa = −yuQ̄LΦ̃uR − ydQ̄LΦ dR − yeL̄LΦ eR + (h.c.), (43)

where Φ̃ ≡ iσ2Φ = (φ0∗, −φ+∗)t These interactions are the most general ones we can write
(at the renormalizable level) while being consistent with gauge invariance given the charges
of Eq. (33). Note that the gauge charges forbid fermion mass terms.

The first step in working out the implications of this Lagrangian is to determine the
vacuum structure. The Higgs potential leads to spontaneous symmetry breaking and we can
choose a gauge (called the unitarity gauge) such that

Φ(x) =

(

0

v + h(x)/
√
2

)

, (44)

where v =
√

µ2/λ. The remaining h field here is called the Higgs boson. This expectation
value has important consequences for the rest of the theory. From the Higgs kinetic term we
obtain masses for some of the W p

µ and Bµ gauge bosons. Inserting this form for the Higgs
field into Eq. (43) we also obtain masses for the fermions.

Symmetry breaking in the SM has the same form as the SU(2)×U(1)-invariant theories
we considered previously. Applying an arbitrary SU(3)c × SU(2)L × U(1)Y transformation
to the vacuum state chosen above, we see that this vacuum is invariant under SU(3)c as well
as an Abelian subgroup of SU(2)L × U(1)Y . The generator of this subgroup is

Q ≡ t3 + Y. (45)

We identify this unbroken subgroup with the U(1)em invariance of electromagnetism, so that
the unbroken Q generator defined here corresponds to electric charge. Therefore there should
exist a massless gauge boson corresponding to the photon.

To verify this we should construct the gauge boson mass matrix generated by the covariant
kinetic term for the Higgs field. This leads to

|DµΦ|2 →
1

2
(∂h)2 +

1

2

v2

2

[

g2[(W 1
µ)

2 + (W 2
µ)

2] + (−gW 3
µ + g′Bµ)

2
]

. (46)

From this expression it is clear that two orthogonal linear combinations ofW 1
µ andW 2

µ obtain
equal masses. It turns out to be convenient to arrange them into the W± vector bosons,

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

. (47)
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The reason for this choice is that the two states have charges ±1 under U(1)em. Their equal
masses are

m2
W =

g2

2
v2. (48)

For W 3
µ and Bµ we get a squared mass matrix of

M2 =
v2

2

(

g2 −gg′
−gg′ g

′2

)

. (49)

As expected, this matrix has a zero eigenvalue corresponding to the photon Aµ. The other
linear combination of W 3

µ and Bµ is called the Z0 vector boson. These mass eigenstates are
related to the fields in the original basis by

(

Zµ

Aµ

)

=

(

cW −sW
sW cW

)(

W 3
µ

Bµ

)

, (50)

where the weak mixing angle θW is defined by

sin θW =
g′

√

g2 + g′2
, cos θW =

g
√

g2 + g′2
. (51)

While the photon is massless, the Z0 vector boson has mass

m2
Z =

(

g2 + g′2

2

)

v2 . (52)

The longitudinal components of the massive W± and Z0 vectors account for the missing
NGBs from the three broken electroweak generators. Since the new mass eigenstate vector
fields we have defined above are related to the original gauge eigenstates by orthogonal
transformations, the kinetic terms for the mass eigenstate vectors will also be canonical.

Rewriting the gauge eigenstates in terms of mass eigenstates in the electroweak parts of
the matter covariant derivatives we find

Dµ ⊃ igtpW p
µ + ig′Y Bµ

= ig

[

1√
2
(t1 + it2)W+

µ +
1√
2
(t1 − it2)W−

µ

]

(53)

+ i(gcW t
3 − sWg

′Y )Zµ + i(gsW t
3 + g′cWY )Aµ

= ig

[

1√
2
(t1 + it2)W+

µ +
1√
2
(t1 − it2)W−

µ

]

+ iḡ(t3 − s2WQ)Zµ + ieQAµ .

Along the way we have implicitely defined the couplings

e =
gg′

√

g2 + g′2
= gsW = g′cW , ḡ =

√

g2 + g′2. (54)
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While the SM has many individual interaction terms, we see that they are all essentially
fixed by the values of g, g′, and v from the underlying gauge-invariant theory together with
the output of the Higgs mechanism. Measurements of the electroweak sector of the SM find
that

mW ≃ 80.4 GeV, mZ ≃ 91.2 GeV, v ≃ 174 GeV,

(55)

s2W ≃ 0.23, g ≃ 0.65, g′ ≃ 0.45, e2/4π ≃ 1/137.

Note that not all the values of these measurable masses and couplings are independent in
the underlying theory. We will see that this allows for very stringent experimental tests of
the electroweak sector of the SM.

The remaining pieces of the SM Lagrangian that we have not yet examined are the
Yukawa terms. Rewriting the Higgs scalar doublet in terms the new vacuum-friendly field
variables, the Yukawa interactions become

−LY ukawa = yuQ̄LΦ̃uR + ydQ̄LΦ dR + yeL̄LΦ eR + (h.c.) (56)

= yu (v + h/
√
2) ūLuR + yd (v + h/

√
2) d̄LdR + ye (v + h/

√
2) ēLeR + (h.c.).

This expression consists of Dirac mass terms for the fermions together with fermion-Higgs
boson interactions:

mi = yi v. (57)

In other words, the mass of each SM fermion is proportional to how strongly it couples to
the Higgs field. This would be a great thing to test if only we could find the Higgs in the
first place.
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