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1 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking (SSB) is a very simple idea that has very profound con-
sequences in QFT. The main idea is that the underlying theory has a symmetry while the
underlying vacuum state does not. The way this works is seen most easily in the following
example.

Consider the Lagrangian

L =
1

2
(∂φ)2 − V (φ), (1)

with the potential

V (φ) = −1

2
µ2φ2 +

λ

4
φ4. (2)

This theory obviously has a discrete symmetry under φ → −φ. However, we also see that
the quadratic term does not have the right sign to be a scalar mass term, unless we interpret
the mass as m = i

√
µ. Something is clearly wrong. The way to resolve this can be found

by looking at the shape of the potential, which we illustrate in Fig. 1. Evidently the origin
of the field space, φ = 0, is not a stable minimum of the potential. For example, solving
the classical equation of motion for a scalar starting at φ(t = t0) = 0, one finds that the
amplitude initially grows exponentially (for ∂tφ(t = t0) 6= 0). Instead, the stable minima lie
at

〈φ〉 = ±µ/
√
λ ≡ ± v. (3)

In the quantum version of the field theory, the rule of thumb is to choose a specific stable
local minimum and expand perturbatively in small fluctuations around it. Let’s choose the
positive solution above and write

φ(x) = v + h(x), (4)

where h(x) is also a real scalar field. Plugging this form into the original Lagrangian, we see
that the kinetic term for h(x) is canonical while the potential becomes

V = −1

4
λv2 +

1

2
λ v2 h2 + λ v h3 +

λ

4
h4. (5)

This potential has a stable minimum at h = 0, a sensible mass term for h of mh =
√
λv, and

some h self-interactions. On the other hand, there is no h → −h symmetry (unless we also
swap v → −v). As a result, we say that the symmetry has been spontaneously broken.
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Figure 1: Feynman rules for a non-Abelian gauge theory.

At this point you might be wondering why we needed to choose a single vacuum. In
ordinary one-particle quantum mechanics, the true ground state for a potential with two
equally-deep minima, |+〉 and |−〉 say, is a linear combination of the two: |0〉 = (|+〉 +
|−〉)/

√
2). In fact, under the reflection symmetry |+〉 ↔ |−〉, implying that this linear

combination is symmetric under the symmetry. The energy of this state is also lower than
either of the |+〉 or |−〉 states. If ones starts in either one of these states, there is a finite
probability to tunnel to the other state and the system can eventually settle down to the
true ground state.

This is not the case for a quantum field theory. The essential difference is that the QFT
we are working with lives in an infinite volume. Starting with φ(x) = +v, the energy needed
to go to φ(x) = −v is proportional to the volume and is therefore infinite. (The energy
cost in one-particle QM is finite.) This implies that it is not possible to tunnel from one
vacuum to the other in the field theory in a finite amount of time.1 As a result, we need
to choose a single specific vacuum state to expand around in the QFT case. Since the two
vacua here are physically distinct and separated by an infinite energy cost, expanding about
one or the other represents a distinct physical theory. In other words, our QFT is defined
both by the Lagrangian of Eq. (1) together with the choice of vacuum state |+〉 (〈φ〉 = +v)
or |−〉 (〈φ〉 = −v).

When we discussed symmetries earlier, we saw that continuous symmetries are partic-
ularly interesting and lead to conserved quantities. Spontaneously breaking a continuous
symmetry provides even more surprises. The simplest example of this is given by the U(1)-
symmetric Lagrangian

L = |∂φ|2 − V (φ) (6)

1Even when the volume is finite, we should still work with a single vacuum when the tunnelling time is

much longer than all the other relevant time scales in the system.
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with

V (φ) = −µ2|φ|2 + λ

2
|φ|4. (7)

This potential obviously has a global U(1) symmetry (as does the kinetic term) and is
sometimes called a “wine bottle” or a “Mexican hat”, and looks just like that in Fig. 1 after
rotating the profile around the vertical axis normal to the Re(φ)-Im(φ) plane. The stable
minima are all those that satisfy the condition

|φ|2 = µ2/λ ≡ v2. (8)

Thus, the set of vacuum states is given by

〈φ〉 = eiβv ↔ |β〉. (9)

Put another way, we have a circle’s worth of distinct vacuum states that we can label by the
parameter β ∈ [0, 2π). Note that even though these vacua do not have an energy barrier
separating them, there is still an infinite gradient energy cost to go from one vacuum state
to another, so we must still pick a specific vacuum to expand around. Any such vacuum
breaks the U(1) invariance since |β〉 → |β + α〉 under φ → eiαφ.

Choosing the vacuum state |β〉, we can expand about it by changing our field variables
to a polar form:

φ = (v + h(x)/
√
2)ei(β+ρ(x)/

√
2v). (10)

Note that we have just exchanged our independent real degrees of freedom from Re(φ) and
Im(φ) to h(x) and ρ(x). Both h(x) and ρ(x) vanish in the vacuum. In general, you can
choose any set of field variables you like as long as they lead to a sensible set of kinetic and
mass terms, although a judicious choice can save you a lot of unneeded work. Plugging these
new variables into the Lagrangian, we get

|∂φ|2 = 1

2
(∂h)2 +

1

2
(1 + h/

√
2v)(∂ρ)2, (11)

as well as

V (φ) = (const) +
1

2
(2λv2)h2 +

λ√
2
vh3 +

λ

8
h4. (12)

This gives canonical kinetic terms for both h and ρ, some interactions, and masses of mh =√
2λ v and mρ = 0.

The masslessness of ρ(x) here is not an accident. Under U(1) transformations there is
still a hidden symmetry under which h is invariant and

ρ/
√
2v → ρ/

√
2v + α. (13)

In other words, the U(1) has become a shift symmetry for ρ. This symmetry forbids
non-derivative interactions involving ρ, and thus allows no mass term for this field. It
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turns out that this is a generic feature of spontaneously broken continuous symmetries,
and the corresponding massless states are called Nambu-Goldstone Bosons (NGBs). Such
symmetries are sometimes said to be realized non-linearly.

This statement about NGBs can be proved very generally. Suppose we have a theory
whose Lagrangian is invariant under the continuous symmetry group G, but whose vacuum
state is only invariant under a smaller subgroup H . Under an infinitessimal G transformation
we have

φi → φi + δαaF a
i (φ). (14)

Invariance of the potential under arbitrary G transformations implies that V (φ+ δαaF a) =
V (φ), which translates into the condition

0 = F a
i

∂V

∂φi
, a = 1, . . . , d(G). (15)

Taking this relation and differentiating with respect to φj and evaluating at the minimum
of the potential, we get

0 =
∂F a

i

∂φj

∂V

∂φi

∣

∣

∣

∣

0

+ F a
i

∂2V

∂φj∂φi

∣

∣

∣

∣

0

, (16)

where (...)|0 implies that one should evaluate the fields at the minimum, φ = 〈φ〉. The first
term vanishes at the minimum of the potential, while the second derivative in the second term
corresponds to the scalar mass matrix of the theory, m2

ij = ∂aV/∂φi∂φj |0. Now, invariance
of the vacuum under some G transformations implies that

F a(φ = 〈φ〉) = 0 ⇐⇒ the a-th generator leaves the vacuum invariant. (17)

Applying this to Eq. (16), we see that the mass matrix has a zero eigenvalue for every
generator that does not leave the vacuum invariant. These zero eigenvalues are precisely the
massless NGBs of the theory.

It is easy to count the number of Goldstone modes in a more organized way. We can
choose generators {pa, qb} for G such that the pa generate the H subgroup that leaves the
vacuum invariant, and the qb make up the rest. Sometimes it is said that the qb generate the
so-called coset space G/H , which may or may not be a subgroup of G. The indices of the pa

run over a = 1, 2, . . . , d(H), and those of the qb run from b = d(H)+ 1, . . . , d(G). Our result
above shows that the Goldstone bosons correspond in a one-to-one way with the generators
qb of G/H :

NGB ↔ generator of G/H. (18)

There are precisely [d(G)− d(H)] of them.

A slightly more complicated example of NGBs is given by the theory with Lagrangian

L = (∂φ)†(∂φ)− V (φ), (19)

4



where

V (φ) = −µ2φ†φ+
λ

2
(φ†φ)2, (20)

and

φ =

(

φ+

φ0

)

(21)

is a complex scalar doublet. This theory is invariant under global SU(2)×U(1) transforma-
tions. The minimum of the theory is defined by

φ†φ = µ2/λ ≡ v2. (22)

Thus, the most general vacuum state can be written in the form

〈φ〉 = eiβQeiα
ata

(

0
v

)

, (23)

where the ta = σa/2 generate SU(2) and Q is the U(1) charge of φ.

Let’s choose the vacuum state corresponding to β = 0 = αa. None of the four SU(2) ×
U(1) generators leave this vacuum invariant individually, but there is a single linear combi-
nation that does:

t̃ =
1

2
I+ t3. (24)

This generates a U(1) subgroup of SU(2)×U(1) under which φ+ has charge Q̃+ = 1/2+1/2 =
1 and φ0 has charge Q̃0 = q/2 − 1/2 = 0, and corresponds to the pa discussed above. We
can choose as generators for the rest of the group

{t′a} =

{

(t1 + it2)/
√
2, (t1 − it2)/

√
2, (−1

2
I+ t3)

}

, (25)

which correspond to the qa.

There are lots of ways to choose new field variables that will lead to a sensible free field
theory. These choices will result in identical masses but different perturbative couplings.
However, at the end of the day, they should all give the same answer for physical observables
(although some choices may be much easier to compute with). The choice we’ll make for
now is

φ(x) = eiρ
a(x)t

′
a/f

(

0

v + h(x)/
√
2

)

, (26)

where f ∼ v is a dimensionful constant that we’ll choose a bit later. Note that there are still
four real degrees of freedom, the same number that we started off with. In this form, it is
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clear that the potential depends only on h(x) since all the factors of ρa(x) cancel out. For
the kinetic term, we get

(∂φ†)(∂φ) =
1

2
(∂h)2 + (v + h/

√
2)2

[

∂ρa∂ρb(tatb)/f + . . .
]

22
. (27)

All the terms involving ρa involve derivatives, and therefore there is no mass term for these
fields. They are evidently the Goldstone bosons of the theory, and they match up precisely
with the set of broken generators. Under infinitesimal G transformations, one also sees that
the ρa transform by a shift, another tell-tale feature of NGBs.

2 Spontaneously “Broken” Gauge “Symmetries”

Having investigated the spontaneous breakdown of continuous global symmetries, it is nat-
ural to do the same for scalar theories with a gauge invariance. The most simple example
has a single complex scalar and a U(1) invariance:

L = |(∂µ + igQAµ)φ|2 − V (φ)− 1

4
FµνF

µν , (28)

with the same potential as before:

V (φ) = −µ2|φ|2 + λ

2
|φ|4. (29)

The space of vacua again has 〈φ〉 = veiβ. Choosing a fixed value of β, we can expand around
this vacuum by rewriting the complex scalar as

φ(x) = ei(β+ρ(x)/
√
2v)(v + h/

√
2). (30)

The main difference in the present case relative to the global U(1) theory is that we now
have the freedom to change the phase of φ by an amount that depends on spacetime. In
particular, we can make a gauge transformation such that β(x)+ρ(x)/

√
2v → 0 everywhere,

or equivalently, φ(x) → (v + h(x)/
√
2). Since field configurations related by gauge transfor-

mations are physically equivalent, we can choose to work in such a gauge without changing
anything that matters.

Expanding the theory in these new variables with this choice of gauge, we find

|Dφ|2 = |(∂µ + igQAµ)φ|2 (31)

=
1

2
(∂h)2 +

1

2
(2g2Q2v2)AµA

µ (v + h/
√
2)2.

At this point things are looking a bit funny. The second term in Eq. (31) contains a mass
term for the gauge boson with mA =

√
2gQv. We are also missing any sort of NGB mode.
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To see what has happened, compare the numbers of degrees of freedom (dofs) for 〈φ〉 = 0
and 〈φ〉 6= 0. We have:

〈φ〉 = 0 :

{

φ has 2 real dofs,
Aµ (=massless) has 2 independent polarizations

〈φ〉 6= 0 :

{

φ → h has 1 real dofs,
Aµ (=massive) has 3 independent polarizations

Aha! 2 + 2 = 1 + 3. The numbers of degrees of freedom match up in both cases. What
has happened is that the would-be NGB mode of φ has gone to become the longitudinal
polarization of the now-massive gauge boson. The highly technical term for this is that the
NGB has been eaten by the gauge vector to give it mass. This effect is also called the Higgs
mechanism, and the remaining physical scalar is called the Higgs boson.2
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