
PHYS 528 Lecture Notes #3
David Morrissey
February 7, 2011

1 Non-Abelian Gauge Invariance

We’ve just seen that QED has an underlying invariance under U(1) gauge transformations,
and this invariance is very closely linked to the whole structure of the theory. Each charged
field in QED picks up a spacetime-dependent phase under a gauge transformation propor-
tional to its electric charge, and this completely fixes the coupling of these charged fields to
the photon. In contrast, the photon field Aµ does not transform, aside from a shift by the
derivative of the gauge transformation parameter, and it does not couple to itself.

Of course, we also know that U(1) is just the tip of the iceberg when it comes to compact
Lie groups. From this point of view, it is completely natural to try to construct field theories
with a gauge invariance under non-Abelian transformation groups such as SU(N) or its many
friends. This is what we will do here. Along the way, we’ll see that much of the structure
of QED goes through unchanged, but that there are a few very important differences. The
most significant of these is that the gauge field of a non-Abelian gauge group will turn out
to have interactions with itself.

To begin, let’s start with an irreducible representation (= irrep) r of the non-Abelian
compact Lie group G. If the irrep has dimension n, we can write the representation matrices
according to1

Ur = eiα
atar , (1)

where the generators tar are (n× n) Hermitian matrices satisfying the Lie algebra relation

[tar , t
b
r] = ifabctc. (2)

This representation acts on an n-dimensional vector space. A set of n fields is said to
transform under the representation r if the transformation law for them is

ψi → (Ur)ijψj =
(

eiα
ata

)

ij
ψj (3)

= ψi + iαa(tar)ijψj +O(α2).

For the most part, we’ll just write the n-components ψi as a single column vector ψ and
suppress the indices, ψ → Urψ, but do keep in mind they’re there.

We now have that ψ → Urψ and ψ̄ → ψ̄U †
r . However, the derivative of ψ, which we’ll

need for its kinetic term, does not transform quite so nicely if the transformation matrix
varies over spacetime:

∂µψ → Ur∂µψ + (∂µUr)ψ. (4)

1As usual, any function of a matrix should be thought of as a formal power series.
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Thus ψ̄iγµ∂µψ is not invariant due to the derivative of the transformation matrix. Note that
we have to be a bit careful with this piece because, in contrast to the Abelian case, one
typically has

∂µ(e
iαata) 6= i(∂µα

atar)e
iαatar 6= eiα

atar i(∂µα
atar). (5)

The reason for this is that αatar and ∂µα
atar don’t commute with each other unless ∂µα

a = λαa.
So, for the time being, we’ll just stick with the correct expression of Eq. (4)

To make the charged field kinetic invariant under the non-Abelian transformation of
Eq. (4) we’ll copy the form of QED and introduce a matrix-valued vector field

Arµ ≡ Aaµt
a
r (6)

that transforms according to

Arµ → UrArµU
−1

r +
1

ig
Ur(∂µU

−1

r ) =
1

ig
Ur(DµU

−1

r ). (7)

Coupling this to the charged field, we get

(∂µ + igArµ)ψ →
[

I ∂µ + ig

(

UrAµU
−1

r +
1

ig
Ur∂µU

−1

r

)]

Urψ (8)

= Ur (∂µ + igArµ)ψ.

As in QED, we call the combination Drµ = (∂µ + igArµ) the covariant derivative operator
for the representation r.2 We see that ψ̄iγµDrµψ (for ψ a fermion) is gauge invariant.

The definitions we’ve made above lead to (at least) two important questions. First, how
do we construct a reasonable gauge-invariant kinetic term for the gauge field? Second, our
definition of the gauge field Arµ depends on the representation of the corresponding matter
field, so do we need additional gauge fields for matter fields transforming under different
representations? It turns out that the answers to both questions are closely related.

Starting with the second question, working out the transformation law explicitly to linear
order in the parameter αa one finds that

Aaµt
a
r → A

′a
rµt

a
r = UrArµU

−1

r +
1

ig
Ur∂µU

−1

r (9)

=

(

Aaµ + fabcAbµα
c − 1

g
∂µα

a

)

tar +O(α2).

At this order, we see that the transformation law for the coefficient fields is independent of
the specific representation. One can extend this result to all orders in αa (by induction or by
composing infinitesimal transformations). Therefore it is sufficient to introduce a single set of
coefficient gauge fields Aaµ to ensure the invariance of the kinetic terms of fields transforming
under any representation at all of the gauge group.

2The ∂µ part of this operator is implicitly multiplied by the n× n identity matrix.
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Moving next to the kinetic term for these gauge fields, a reasonable first guess would
be to start with the combination ∂µA

a
ν − ∂νA

a
µ. Unfortunately, it has a compicated gauge

transformation property and it’s not at all clear how to put it into a gauge-invariant kinetic
term. Instead, let’s use the nice gauge transformation properties of the covariant derivative
be our guide. Acting on a field transforming under the rep r, we had that the covariant
derivative of that field transforms as Dµψ → UrDµψ. Equivalently, as a differential operator,
we have that Dµ → UrDµU

−1
r . In the same way, we have that the covariant commutator

differential operator transforms as [Dµ, Dν ] → Ur[Dµ, Dν ]U
−1
r . Now, working out the effect

of this operator on any field ψ transforming in the rep r one finds

[Dµ, Dν ]ψ = ig ta(∂µA
a
ν − ∂νA

a
µ − g fabcAbµA

c
ν)ψ (10)

≡ ig taF a
µνψ.

Aha! The commutator of these two differential operators doesn’t involve any derivatives of
ψ at all, it transforms in a reasonable way, and it contains the pieces we want to make up a
vector kinetic term.

A reasonable gauge-invariant kinetic term for the gauge fields is therefore3

L ⊃ − 1

4(ig)2T2(r)
tr([Dµ, Dν ][D

µ, Dν ]) (11)

= − 1

4(ig)2T2(r)
(ig)2F a

µνF
bµν tr(tatb)

= −1

4
F a
µνF

aµν .

Note that even though we used a specific representation to define the gauge kinetic term, the
third line of Eq. (11) shows that it can be written in a way that is representation-independent.
In all the discussion here, we’ve cobbled together a sensible gauge-invariant Lagrangian by
fiddling around. However, a slightly more careful treatment shows that the matter-gauge
couplings we have obtained are essentially unique. In other words, the requirement of gauge-
invariance completely fixes the structure of the gauge interactions. As in QED, this is why
it makes sense to think of gauge-invariance as the fundamental underlying feature. Also like
in QED, gauge-invariance is to be treated as an equivalence relation rather than a genuine
symmetry.

2 Computing with Non-Abelian Gauge Theories

Based on the discussion above, we are now able to write down the Lagrangian for a gauge
field and a set of fermions ψ transforming in a representation r of the (possibly non-Abelian)
gauge group G.4 The kinetic and gauge-matter interaction terms are

L = −1

4
(F a

µν)
2 + ψ̄iγµDµψ + . . . (12)

3This is gauge invariant due to the cyclicity of the trace: tr(UMU
−1) = tr(M).

4After doing the homework, you’ll also know how to add charged scalars to the theory.
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Additional terms can include matter-matter interactions and higher-dimensional operators
provided they are consistent with gauge invariance. It is also straightforward to add other
fermion species transforming under different represenations of the gauge group. The form of
the covariant derivative operator implicitly depends on the representation of the field upon
which it acts, and is given by

ψiγµDµψ = ψ̄iγµ(∂µ + igAaµt
a
r)ψ, (13)

where tar are the generators of the representation r. Note that tar = 0 when r is the trivial
representation. In other words, a field transforming under the trivial representation of a
gauge group doesn’t couple to the gauge boson (and is said to be uncharged). Expanding
out the gauge kinetic term, one obtains

−1

4
(F a

µν)
2 = −1

4
(∂µA

a
ν − ∂νA

a
µ)

2 (14)

+
1

2
g fabc(∂µA

a
ν − ∂νA

a
µ)A

bµAcν − 1

4
g2fabcfadeAbµA

c
νA

dµAeν .

The first term is evidently the kinetic term for the vector, while the second two terms are
gauge boson self-interactions induced by the non-Abelian nature of the gauge group. This is
perhaps the most importance consequence of this extension of QED. These expressions also
reduce to the Abelian case when we take fabc → 0 and tar → Q, where Q is the U(1) charge
of the field ψ.

Starting from Eq. (13) and Eq. (14) we can derive all the Feynman rules for gauge
interactions in a non-Abelian gauge theory. The final result is very nearly identical to
QED with some additional group theoretic factors for decoration. However, there are a few
important differences that must be taken into account.

In order to obtain a sensible quantum propagator for the gauge field, it is necessary to
choose a specific gauge to some extent.5 A very popular family of gauge choices goes by the
name of Rξ, with each choice in the family characterized by a constant parameter ξ. This
leads to a vector propagator for Aaµ → Abν of

Dab
µν(p) =

i

p2
δab

[

−ηµν + (1− ξ)
pµpν
p2

]

. (15)

The corresponding Feynman rule is shown in Fig. 1. Some popular ξ values are the Landau
gauge with ξ = 0, and the Feynman-’t Hooft gauge with ξ = 1. In any case, any observable
quantity must be independent of ξ due to the requirement of gauge invariance. This can be
a useful way to check complicated calculations.

A full quantum derivation of the Rξ-gauge propagator of Eq. (15) also leads one to include
an additional set of massless Faddeev-Popov ghost fields transforming under the adjoint rep
of the gauge group. Ghost fields have the unusual property of being anti-commuting Lorentz
scalars. (Typically, even-spin fields (bosons) are commuting while odd-spin fields (fermions)

5The same is true for QED, but in that case we can get away with ignoring the implications when
computing Feynman diagrams.
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are anti-commuting.) The interpretation is that the ghosts do not represent physical particle
excitations.6 Instead, they play the role of “negative degrees of freedom” in Feynman diagram
calculations to cancel off the gauge redundancy of the vector gauge fields. In practice, this
means that ghost fields only appear as intermediate states in loop diagrams, and never appear
as on-shell external states in a physical process. With one additional minor requirement to
be discussed below, this implies that we can completely ignore the ghost fields as long as we
stick to tree-level processes.

The propagator of a fermion field is nearly identical to the QED case. For ψi → ψj
(where i and j are the indices of the rep), we have

Dij(p) = δij
i(p/+m)

p2 −m2
. (16)

Similarly, for a charged complex scalar φi → φj,

Dij(p) = δij
i

p2 −m2
. (17)

We illustrate the corresponding diagrams in Fig. 1.

Vertex factors are straightforward to derive from Eqs. (13,14). The vertex corresponding
to the fermion-vector ψj → ψiA

a
µ interaction is

VffG = −ig (tar)ijγµ. (18)

Notice how the indices on the generator matrix match up with the representation indices on
the fermions. There are also three- and four-point gauge self interactions. For AaµA

b
νA

c
ρ we

have

V3G = −g fabc [ηµν(pa − pb)ρ + ηνρ(pb − pc)µ + ηρµ(pc − pa)ν ] , (19)

where pa,b,c are the incoming momenta carried by the vectors Aa,b,cµ,ν,ρ at the vertex (see Fig. 1).
For the AaµA

b
νA

c
ρA

d
σ vertex we get

V4G = −ig2[fabef cde(ηµρηνσ − ηµσηνρ)

+ facef bde(ηµνηρσ − ηµσηνρ) (20)

+ fadef bce(ηµνηρσ − ηµρηνσ)].

Again, take a look at Fig.1.

Feynman diagram calculations in non-Abelian gauge theories are very similar to those
in QED up to some additional group theoretic factors and the gauge field self-interactions.
As in QED, one builds up an amplitude by writing down all the Feynman diagrams for the
process. Each diagram has a numerical value which is built up by tracing backwards along
fermion lines, putting in internal propagators and vertex factors, and adding the initial and

6Ghosts also come up in QED and other Abelian gauge theories, but since the adjoint rep of such theories
is trivial they do not couple to anything and can be ignored when computing Feynman diagrams.
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Figure 1: Feynman rules for a non-Abelian gauge theory.

final state polarization vectors and fermion spinors just like in QED. In addition, one must
also keep track of non-Abelian group theory factors. For example, each gauge boson line has
an adjoint index associated to it while each charged fermion or scalar line transforming in
the rep r has an index corresponding that rep.

The amplitude that is computed has specific external spin states, vector polarizations,
and group theory values. In most cases we want unpolarized cross-sections that are summed
over all distinct final states and averaged over all distinct initial states. The fermion spin
and vector polarization parts are nearly identical to QED, but now we also have to sum
over the distinct states in a given rep. For example, the amplitude for a process involving
ψj +X → ψi + Y will take the form Mij, where i and j are indices for the rep of ψ. The
squared and summed matrix element for the process will then involve

“|M|2′′ = 1

d(r)

∑

i,j

M∗
ijMij, (21)

where d(r) is the dimension of the rep of ψ - dividing the sum by this gives the average since
there are d(r) initial states.
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e.g. 1 ψψ̄ → χχ̄

Suppose ψ and χ are massless fermions transforming under the reps rψ and rχ of the
non-Abelian gauge group G. The Feynman diagram for this process is given in Fig. 2. The
amplitude is

−iM = −ig2(tarψ)ij(t
b
rχ
)pq
δab
p2

(ū3γ
µv4)(v̄2γ

νu1)
[

−ηµν + (1− ξ)pµpν/p
2
]

. (22)

Here, p = (p1 + p2) = (p3 + p4), and the subscripts label the momenta of the spinors (with
spinor indices contracted). Squaring and summing/averaging the matrix element, the spin
part comes out just like in the (e+e− → µ+µ−) example we looked into previously in QED
(and one finds that the ξ-dependent part does not contribute in the end). There is,
however, a new group theory piece. The net result is

“|M|2′′ = (GT )
8g4

p2
[(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3)] (23)

with the group theory factor given by

(GT ) =
1

d2(rψ)

∑

i,j

∑

p,q

(tarψ)
∗
ij(t

c
rψ
)ij(t

b
rχ
)∗pq(t

d
rχ
)pq δabδcd

=
1

d2(rψ)
tr(tarψt

c
rψ
) tr(tarχt

c
rχ
) δabδcd (24)

=
d(A)

d2(rψ)
T2(rψ)T2(rχ).

In the second line we have made use of the Hermiticity of the ta to write (ta)∗ = (ta)t while
in the third line we have used δacδbdδabδcd = δcc = d(A). A useful trick for obtaining the
gauge matrix factors is to trace backwards along the “gauge flow” in the diagram, much
like one traces backwards along fermion lines to get the spinor factors.

q
χp

p

p

1

2

3

4

p χ
A

ψ

ψ

j

i

p

Figure 2: The Feynman diagram for ψψ̄ → χχ̄.

Relative to QED (or other purely Abelian gauge theories), there is one additional com-
plication related to the polarization of external vector states. Recall that in QED, we were
able to use a polarization completeness relation to simplify the polarization sums:

∑

λ

ǫµ(p, λ)(λ) = −ηµν + (stuff you can ignore) (Abelian case). (25)
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The “extra stuff” here is related to the fact that there are only two distinct physical
polarizations for a massless vector, whereas four states would be needed for full completeness
which corresponds to a sum that produces ηµν alone. Fortunately, in Abelian gauge theories
the extra stuff always vanishes automatically when it is contracted with a physical amplitude
and can therefore be neglected. In the non-Abelian case it turns out that you can’t always
get away with ignoring the extra stuff. There are various ways of handling this, but in
many cases the easiest is to specify explicitly the two transverse polarization vectors ǫλ(p),
λ = 1, 2, and sum over them. You can choose these however you want provided they satisfy
the conditions

(ǫλ)∗ ·ǫλ′ = −δλλ′ , (1,~0)·ǫλ = 0, p·ǫλ = 0. (26)

For example, if ~p = pẑ, two popular choices are {(0, 1, 0, 0), (0, 0, 1, 0)} (linear polarizations)
and {(0, 1, i, 0)/

√
2, (0, 1,−i, 0)/

√
2} (right- and left-handed circular polarizations).

3 The Fundamental QCD Lagrangian

Quantum chromodynamics is the underlying theory of the strong force. It is a non-Abelian
gauge theory with gauge group SU(3). The gauge fields (of which there are 8 = 32 −
1 components) are called gluons Gµ. In addition, there are six fermionic quark fields,
u, d, c, s, t, b, each transforming under the fundamental 3 representation of SU(3). The
different quark fields are called flavours. For each flavour, the three components of the 3

representation are called colours – u = ui, i = 1, 2, 3 for instance. From the point of view of
QCD, there is nothing terribly fundamental about flavour while the colours are an essential
part of the underlying gauge symmetry structure. The terminology of flavour and colour is
also frequently applied to other non-Abelian gauge theories.

Given what we know about non-Abelian gauge theories, we can write down the QCD
Lagrangian immediately:

L = −1

4
(Ga

µν)
2 +

∑

q=u,d,c,s,t,b

q̄(iγµDµ −mq)q, (27)

where Dµ = (∂µ + igst
aAµ) and mq is the mass of quark q. That’s it!
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