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1 Symmetries in QFT

Symmetries play a central role in modern particle physics. Insofar as we believe that
elementary particles can be described by QFT (and the evidence so far points in this
direction), our role as theoretical and experimental particle physicists is to figure out the
Lagrangian of our world. In particular, we must specify a set of fields and their interactions.
Once we have a candidate Lagrangian, we can compute the dynamics of the theory and
compare to experiment. Symmetries make the task of figuring out the Lagrangian much
easier because they strongly constrain the set of possible fields and interactions. They are
also enormously useful in computing the dynamics.

To begin, let’s look at a few simple examples:
e.g. lL.a) ¥ = %(3@2 _ %m2¢2 _ %¢4

This theory is symmetric under ¢ — —¢ in that the form of the Lagrangian doesn’t
change. The implication of this symmetry is that for any process, the number of particles
in the initial state minus the number in the final state must be even.

e.g. Lb) .2 =3(0¢)* — ym*¢” + Vi O, — ydup

This theory is symmetric under ¢ — —¢, ¢ — v51. (Note that the second condition
implies 1 — —1+°.) This symmetry forbids a fermion mass term. Such symmetries are
sometimes called chiral symmetries.

e.g. 2. L =100)> — M?|¢|* + S22, hi(iv 0, — mi); — (ydhriha + h.c.)

This theory is symmetric under 1, — €@y, Py — @2y, ¢ — €9 ¢ for any real
constant « provided (Qy — Q1 + @2) = 0. These @)’s are sometimes called the charges of
the fields under the symmetry. In contrast to the previous examples, this symmetry is
continuous rather than discrete. For generic ()’s, the symmetry forbids a cross mass term
of the form 11105, and interactions such as ¢?, ¢®, ¢*, ¢111;. Note also that we can write
the complex scalar field ¢ in terms of two real scalars, ¢ = (¢, + i¢;)/v/2. For Q4 # 0 both
real scalars must have the same mass, and it turns out to be easier to treat them as a
single complex scalar with distinct particle and antiparticle excitations, rather than two
separate real scalars each of which is its own antiparticle.

To be more precise, we say that a transformation of the fields is a symmetry of the theory
if the equations of motion for the transformed fields take the same form as those of the
original fields. This is equivalent to having, under ¢ — ¢'(¢) and S[¢] — S[¢'(¢)] = S'[¢],
S'[¢] = S[¢] up to total derivatives. In other words, the action retains the same functional
form after the transformation (up to possible total derivatives).



At this point, it is worth remembering how one derives the equations of motion from
an action. The solution to the equation of motion is the field configuration such that for
any arbitrary infinitesimal field variation that vanishes on the boundary, ¢ — ¢ + d¢, the
numerical value of the action remains the same to leading order: 65 = 0. For a local QFT,

this leads to
- ' o0 "9(0 } ' {788 })
0S /d x ({ 5 oy 0,60 d¢; + 0, ( u¢i)5¢l . (1)

The term in the first bracket gives the equation of motion for ¢; by forcing it to vanish,
while the second term is zero automatically because the field variation is assumed to vanish
on the boundary.

In deriving the equation of motion above we considered arbitrary field variations (that
vanish on the boundary). Symmetries, on the other hand, correspond to very specific field
variations. In order to retain the same form of the equations of motion under a symmetry
transformation, the Lagrangian can only change by a total derivative. In the case of a
continuous symmetry, this implies the existence of a conserved charge. To see this, consider
an infinitesimal symmetry transformation of the form

¢i = ¢; = di + 00" Fi(9) (2)
To leading order in da®, the implication of this being a symmetry of the theory leads to
0L 0L
8L = 6a"0,T" = 0 Foi+ o 0, (00" Fy
&aﬂja agbl o > +8(8u¢z) ﬂ( o ,> <3>
0L 0L 0L
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The first term vanishes for fields that satisfy the equation of motion. Keeping the second
term, we conclude that

0L
R o .

= 0.k

Thus the quantity j* is a conserved current corresponding to the continuous symmetry.! In
terms of components, j* = (p,,Jjo); a charge density and a spatial current. We can also
define a conserved charge according to

Qo = / a0, (5)

As long as the current vanishes on the spatial boundary, we find that the the charge is
constant in time, 9,Q, = 0.2

!This result is known as Noether’s theorem.
2A reasonable requirement for quantum fields is that ¢(x) — 0, 9,¢(x) — 0 as |F| — oo for any finite ¢.



e.g. 3.a) £ = (9¢)?, b — o+«

The Lagrangian is invariant under this transformation, so we have

" =0un" (6)
It’s easy to check that this current is conserved via the equation of motion.

e.g. 3.b) £ =|0¢]> = V(|¢]*) + V(iv"0 — m), ¢ — e Qp, ) — ey

This leads to the symmetry current

i = Quibn™ + Qud* (i 9,)0. (7)

— —

x4
Note that here 0,= (9, — 0,)

A particularly important conserved current is the energy-momentum tensor. For a generic
Lagrangian with no explicit dependence on x*, the theory is symmetric under spacetime
translations: x¥ — ¥ + o, ¢(z) = ¢(z + a) ~ ¢(z) + a¥0,¢ + O(a?). Under such a shift,
the Lagrangian only changes by a total derivative, ¥ — & + a*d, (0" %) + O(a?). The
corresponding conserved current is therefore

0.2
0(9,9)

The quantity 7" is called the energy-momentum tensor of the theory. Here, p labels the
component of the current, while v labels the translation direction. If this is confusing, don’t
worry. We can always arrange for T*” to be symmetric in its indices. We interpret 7% as
the energy density, T% as the i-th momentum density, and so on.

jul/ = T!f/ = al/(b - 5th$' (8)

e.g. 4. L = 1(0¢)* - V(9)
This gives

T/J,l/ = /J(bal/(b - n,twg (9)

In particular, Toy = £(00¢)? + %(6@2 + V, gives a reasonable energy density.

2 Symmetries and Groups

Symmetry transformations obey the mathematical properties of a group, and it’s worth
spending a bit of time discussing them.®> A group G is a set of objects together with a
multiplication rule such that:

3Much of this discussion is based on Refs. [1, 2], both of which provide a much more detailed account of
the topics covered here.



1. if f, g € G then h = f-g € G (closure)

2. f-(g-h) = (f-g)-h (associativity)
3. there exists an identity element 1 € G such that 1-f = f-1 = f for any f € G (identity)

4. for every f € G there exists an inverse element f~! such that f-f~! = f=1.f =1
(invertability)

A group can be defined via a multiplication table which specifies the value of f-g for every
pair of elements f, g € G. An Abelian group is one for which f-g = g-f for every pair of
f, g € G. A familiar example of an Abelian group is the set of rotations in two dimensions.
In contrast, the set of rotations in three dimensions is non-Abelian.

For the most part, we will be interested in symmetry transformations that act linearly
on quantum fields,

bi — &; = Uij¢;. (10)

As a result, we will usually work with matrix representations of groups. Groups themselves
are abstract mathematical objects. A representation of a group is a set of n x n matrices
U(g), one for each group element, such that:

L U(N)U(g) =U(f-9)
2. U(1) =1, the identity matrix.

Note that these conditions imply that U(f~') = U~!(f). The value of n is called the
dimension of the representation. For any group, there is always the trivial representation
where U(g) = I for every f € G. Note that a representation does not have to faithfully
reproduce the full multiplication table. A representation is said to be wunitary if all the
representation matrices can be taken to be unitary (UT = U™1).

e.g. 1. Rotations in two dimensions

This group is formally called SO(2) and can be defined as an abstract mathematical
object. Any group element can be associated with a rotation angle . The most familiar
representation is in terms of 2 X 2 matrices,

(11)

—sinf cosf

D(9>:< cosf sm0>_

Of course, there is also the trivial representation.

Our focus will be primarily on continuous transformations. These correspond to what
are called Lie groups, which are simply groups whose elements can be parametrized in terms
of a set of continuous variables {a*}. We can (and will) always choose these coordinates
(near the identity) such that the point a® = 0 corresponds to the identity element of the

4



group. Thus, for any representation of the group, we have for infinitesimal transformations
near the identity

U(0a®) =T+ ida™t® + O(0a?). (12)

The matrices t* are called generators of the representation. Finite transformations can be
built up from infinitesimal ones according to
U(a®) = lim (1 4 ia®®/p)P = ™", (13)
p—00
This is nice because it implies that we only need to sort out a finite set of generators

when discussing the representation of a Lie group rather than the infinite number of group
elements.

A set of generator matrices {t*} can represent a Lie group provided they satisfy a Lie
algebra. Besides being able to add and multiply them, they must also satisfy the following
conditions:

1. [t2, %] = i fobt¢ for some constants f

2. [t [tb, t¢]] + [, [te, t2]] + [t [t2, 7)) = O (Jacobi Identity)

The first condition is needed for the closure of the group (i.e. exp(ia®t®)exp(i3*t®) =
exp(iA“t*) for some A*) while the second is required for associativity. In fact, we can define a
Lie group abstractly by specifying the structure constants fo°. Most of the representations
we’ll work with are unitary, in which case the structure constants are all real and the
generators t* are Hermitian.

The nice thing about working with linear generators ¢* is that we can choose a nice basis
for them. This is equivalent to choosing a nice set of coordinates for the Lie group. In
particular, it is always possible to choose the generators t¢ of any representation r such that

tr(t7tb) = Ty(r)6®. (14)

The constant Ty (r) is called the Dynkin index of the representation. We will always implictly
work in bases satisfying Eq. (14), and we will concentrate on the case where the index is
strictly positive. If so, the corresponding Lie group is said to be compact and is guaranteed
to have finite-dimensional unitary representations. (A familiar non-compact example is the
Minkowski group.)

It turns out that there are only a finite set of classes of compact Lie groups. The classical
groups are:

e U(1) = phase transformations, U = e
e SU(N) = set of N x N unitary matrices with det(U) = 1

e SO(N) = set of orthogonal N x N matrices with det(U) = 1

bt



e Sp(2N) = set of 2N x 2N matrices that preserve a slightly funny inner product.

In addition to these, there are the exceptional Lie groups: Fg, Er, Eg, Fy, Go. In studying
the Standard Model, we will focus primarily on U(1) and SU(N) groups.

e.g. 2 SU(2)

This is the prototypical Lie group, and should already be familiar from what you know
about spin in quantum mechanics. By definition, the corresponding Lie algebra has three
basis elements which satisfy

[t%, %] = et (15)

The basic fundamental representation of SU(2) is in terms of Pauli matrices: t* = 0%/2.
Since [0, 0%] = 2ie®“o¢, it’s clear that this is a valid representation of the algebra. You
might also recall that any SU(2) matrix can be written in the form U = exp(ia®c®/2).

Some useful and fun facts about compact Lie algebras:

e Except for U(1), we have tr(t*) = 0 for all the classical and exceptional Lie groups.
e Number of generators = d(G)

N? —1; SU(N)
d(G) = N(N —-1)/2; SO(N) (16)
2N(2N +1)/2;  Sp(2N)

e A representation (= rep) is irreducible if it cannot be decomposed into a set of smaller
reps. This is true if and only if it is impossible to simultaneously block-diagonalize all
the generators of the rep. Irreducible representation = irrep.

e If one of the generators commutes with all the others, it generates a U(1) subgroup
called an Abelian factor: G = G’ x U(1).

o [f the algebra cannot be split into sets of mutually commuting generators it is said to
be simple. For example, SU(5) is simple (as are all the classical and exceptional Lie
groups given above) while SU(3) x SU(2) x U(1) is not simple. In the latter case, all
the SU(3) generators commute with all the SU(2) generators and so on.

e A group is semi-simple if it does not have any Abelian factors.

e With the basis choice yielding Eq. (14), one can show that the structure constants are
completely anti-symmetric.

e The fundamental representation of SU(N) is the set of NV x N special unitary matrices
acting on a complex vector space. This is often called the N representation. Similarly,
the fundamental representation of SO(N) is the set of N x N special orthogonal
matrices acting on a real vector space.



e The adjoint (= A) representation can be defined in terms of the structure constants
according to

(t%)be = —if* (17)

Note that on the left side, a labels the adjoint generator while b and c¢ label its matrix
indices.

e Given any rep t%, the conjugate matrices —(t%)* give another representation, unsur-
prisingly called the conjugate representation. A rep is said to be real if it unitarily
equivalent to its conjugate. The adjoint rep is always real.

e The Casimir operator of a rep is defined by T? = t%t¢ (with an implicit sum on a). One
can show that T commutes with all the 2. For an irrep (=irreducible representation)
of a simple group, this implies that

TP = Cy(r)L, (18)
for some positive constant Cy(r).

e It is conventional to fix the normalization of the fundamental of SU(N) such that
T5(IN) = 1/2. Once this is done, it fixes the normalization of all the other irreps. In
particular, it implies that for SU(N), Co(N) = (N? —1)/2N, Ty(A) = N = Cy(A).

3 Gauge Invariance and QED

Recall the QED Lagrangian:
- - 1
L = Yiy(0, +ieQA, )Y —mapyp — ZFWF“”. (19)

This theory clearly has a continuous symmetry for any fixed value of the parameter a:

Y = €@
{Au oA, (20)

The corresponding symmetry group is U(1). On the other hand, suppose we’re feeling
adventurous and decide to elevate the transformation parameter to a function on spacetime:
a = a(z). Doing so, we find that the transformation above is no longer a symmetry of the
Lagrangian. In particular,

iy O — Yin O + Yin* (iQ0,a) . (21)

Evidently the transformation of Eq. (20) is not a symmetry of the theory for non-constant
parameters o(z).



We can restore the invariance of the fermion terms if we also have the vector field
transform according to:

L
(22)
{ A, — A, — é@ua.
Together, this implies that
(8, + 1eQAL ) = Db — €9°Dap, (23)

and therefore 1ivy* D, 1) is invariant under the transformation for arbitrary a(z) provided the
vector field also transforms as indicated. The differential operator D,, is sometimes called a
covariant derivative. Even better, if we look at the effect of this shift on the photon kinetic
term, we find that it remains unchanged as well:

Fiur = (O = 0 A) = @Ay — 0,4,) = (8,0 — D,0,) = Fyu + 0. (24)

Thus, QED is invariant under the transformations of Eq. (22) for any reasonable arbitrary
function a(x).

At first glance this invariance might just seem like a clever trick, but the river beneath
these still waters runs deep. Thinking back to regular electromagnetism (of which QED is just
the quantized version), one often deals with scalar and vector potentials. These potentials
are not unique and are therefore not observable (for the most part), and the true “physical”
quantities are the electric and magnetic fields. The vector field A, in QED, corresponding
to the photon, is identified with these potentials according to

-,

At = (¢, A), (25)

where ¢ and A are the usual scalar and vector potentials. This is justified by the equations
of motion derived from the QED Lagrangian provided we also identify

FOi — —Ei7 FZ_] — _EijkBk’ (26)

with the electric and magnetic fields. With this identification, the transformations of Eq. (22)
coincide with the usual “gauge” transformations you should have encountered in electro-
magnetism. Sometimes we call A, the gauge boson and the operation of Eq. (22) a gauge
transformation.

Keeping in mind the story from electromagnetism, the interpretation of the quantum
fields in QED is that only those quantities that are invariant under the trans-
formations of Eq. (22) are physically observable. In particular, the vector field A,
that represents the photon is not itself an observable quantity, but the gauge-invariant field
strength [}, is. Put another way, the field variables we are using are redundant, and the
transformations of Eq.(22) represent an equivalence relation: any two set of fields (¢, A,)
related by such a transformation represent the same physical configuration. Sometimes
the invariance under Eq. (22) is called a local or gauge symmetry, but it is not really a
symmetry at all. A true symmetry implies that different physical configurations have the



same properties. (Gauge invariance is instead a statement about which configurations are
physically observable.

Gauge invariance is also sensible if we consider the independent polarization states of the
photon, of which there are two. The vector field A, represents the photon, but it clearly
has four independent components. Of these, the timelike polarization component is already
non-dynamical on account of the form of the vector kinetic term. Invariance under gauge
transformations effectively removes the additional longitudinal polarization leaving behind
only the two physical transverse polarization states. Note as well that if the photon had
a mass term, £ D m?A,A*/2, the theory would no longer be gauge invariant. Instead,
the longitudinal polarization mode would enter as physical degree of freedom. Equivalently,
gauge invariance forces the photon to be massless.

In the discussion above we started with the QED Lagrangian and showed that it was
gauge-invariant. However, the modern view is to take gauge invariance as the fundamental
principle. Indeed, the only way we know of to write a consistent, renormalizable theory of
interacting vector fields is to have an underlying gauge symmetry. For QED, we could have
started with a local U(1) gauge invariance for a charged fermion field and built up the rest
of the Lagrangian based on this requirement. In this context, the vector field is needed to
allow us to define a sensible derivative operator on the fermion field, which involves taking a
difference of two fields at different spacetime points with apparently different transformation
properties, and corresponds to something called a connection. Gauge invariance completely
fixes the photon-fermion interactions, illustrating why it is so powerful. We will see shortly
that gauge invariance is even more powerful when the underlying symmetry is a non-Abelian
Lie group.
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