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1 Notational Conventions

In elementary particle physics, we are usually interested in highly relativistic systems. For
this reason, we will work in a Lorentz-covariant language. Some of the key bits of notation
related to this are:

xµ = (t, x, y, z), µ = 0, 1, 2, 3 (1)

pµ = (E, px, py, pz) (2)

xµ = ηµνx
ν , pµ = ηµνp

ν (3)

ηµν = diag(+1,−1,−1,−1), ηµν = diag(+1,−1,−1,−1) (4)

ǫµνλκ = completely antisymmetric with ǫ0123 = +1. (5)

Note that the convention I’ll use for the metric is opposite to that used in the main text,
Burgess&Moore[1]. Sorry about this, but my convention is by far the more commonly-used
one in particle physics, and it’s a useful skill to know how to convert from one convention to
another.

Here, whenever an index is repeated, it is implicitly summed over. Indices are raised and
lowered with the matrix ηµν and its inverse ηµν . For instance,

x2 ≡ xµxµ = ηµν x
µxν =

3
∑

µ=0

3
∑

ν=0

ηµν x
µxν = t2 − ~x2, (6)

pµ = ηµνp
ν . (7)

The general rule-of-thumb with this notation is that a quantity is Lorentz-invariant iff all
the indices are summed over. Thus, x2 and p2 are Lorentz-invariant, while xµ and pµ are
not. We’ll also write derivatives as

∂µ =
∂

∂xµ
(8)

∂2 = ηµν∂µ∂ν = ∂2t − ~∇2 (9)

In passing, let me add that the convention of summing over repeated indices is sometimes
called the Einstein summation convention.1

We will also work in natural units, with

~ = c = 1. (10)

1Apparently he felt that it was his greatest contribution to physics [7].
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This simplifies dimensional analysis since now all dimensionful quantities can be expressed
in units of energy. For example,

[E] = [P ] = [M ] = +1, [L] = [T ] = −1, [∂µ] = +1, (11)

where the square brackets denotes the energy dimension of the quantity (in natural units, of
course). To put a result back in regular units, just stick in powers of ~ (∼ E·T ) and c (∼ L/T )
until you get what you want. Three handy things to remember are ~ c = 1 ≃ 0.197GeV fm,
c = 1 ≃ 3× 1010cm2/s, and 1 pb = 10−36cm2.2

When dealing with fermions, we will also make use of Pauli and Dirac matrices. For the
Pauli matrices, we will write

σ0 = I, σi = σ1,2,3 (12)

with

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (13)

Recall that

σiσj = δijI+ iǫijkσk . (14)

Let us also define

σµ = (I, ~σ) , σ̄µ = (I,−~σ). (15)

The Dirac matrices (in any number of spacetime dimensions) satisfy

{γµ, γν} = 2ηµν . (16)

In four spacetime dimensions, they can be written as 4× 4 matrices. A useful choice is

γµ =

(

0 σµ

σ̄µ 0

)

. (17)

This choice is sometimes called the chiral representation. We will also define

γ5 = γ5 = iγ0γ1γ2γ3 = − i

4!
ǫµνλκγµγνγλγκ. (18)

In the chiral representation, one finds

γ5 =

(

−I 0
0 I

)

. (19)

We will also encounter the chiral projectors PL = (1− γ5)/2 and PR = (1 + γ5/2).

2A pb is a unit commonly used to express scattering cross-sections. It is 10−12 barns, with 1b = 10−24cm2.
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2 Quick Review of Quantum Field Theory

Quantum Field Theory (QFT) is the best tool we know of to describe the physics of
elementary particles. It is the basic language used in elementary particle physics, superstring
theory, and many branches of condensed matter physics. Learning QFT has the reputation
of being difficult, but it is more accurate to say that it is time-consuming. Since I can’t cram
a whole year’s worth of material into a single class, I will try to give you a general flavour
of the topic. For a list of useful textbooks, take a look at Refs. [2, 3, 4, 5, 6]. I also strongly
encourage you to take a full QFT course at some point in your graduate careers.

QFT is nothing more than ordinary quantum mechanics formulated in a relativistically
invariant way and applied to continuous field systems. The only difference from the more-
familiar one-particle quantum mechanics is what we identify as the underlying degrees of
freedom, which in this case are the fields. It might seem strange to use continuous fields
to describe discrete objects like particles. When a field is quantized, however, there appear
discrete quantum excitations that we interpret as particles. This interpretation is justified
a posteriori by its excellent agreement with experiment. On the other hand, ordinary
one-particle quantum mechanics doesn’t get along well with (special) relativity because it
doesn’t account for particle creation at high energies. Quantum field theory avoids this
problem, and reduces to one-particle quantum mechanics in the appropriate limit. For a
nice alternative point of view on why we use QFT to describe elementary particles, read
Ch.1 of Burgess&Moore [1].

We usually define a QFT in terms of an action that depends on a set of fields {φi}. For
the cases of interest to us, the action can be written in the form

S[φi] =

∫

d4x L (φi(x)). (20)

The function L (φi) is the Lagrange density (but we’ll call it the Lagrangian). Some
comments about the action:

• S depends on xµ only through the fields φi(x). This implies invariance under spacetime
translations.

• S should also be invariant under Lorentz boosts and rotations. These take the form

xµ → Λµ
νx

ν := x′
µ
(x) (21)

φα(x) → U β
α φβ(x

′(x)) := φ′
α(x) (22)

Since d4x′ = d4x, Lorentz invariance requires that L (φ) → L ′(φ′) = L (φ′) (up to
total derivatives). In other words, the Lagrangian as a function of the transformed has
the same functional form as the original Lagrangian.

• The action is local, in that it only depends on functions (and derivatives) fields at
the same spacetime point. (e.g. There are no terms like

∫

d4x
∫

d4y φ(x)φ(y) in the
action.) This is needed if we want our theory to be causal.
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• Dimensions: [S] = 0, [d4x] = −4, so we need [L ] = +4.

• S needs to be real for the theory to be unitary.

An action that satisfies these conditions can potentially give rise to a well-defined,
Lorentz-invariant QFT. Because of Lorentz Invariance (LI), we can work with fields that
have well-defined transformation properties under Lorentz transformations. We identify
these fields with particles of definite spins:

Scalar (s = 0): φ′(x) = φ(x′)
Fermion (s = 1/2): ψ′(x) = U b

a ψb(x
′) (The indices here are spinor indices.)

Vector (s = 1′): A′
µ(x) = Λ ν

µ Aν(x
′)

A handy rule of thumb is that the Lagrangian will be LI provided all the indices on the fields
are properly contracted.

In practice, we want to use QFT to compute things that can be compared to experiment.
The standard technique for this is to make a perturbative expansion of the QFT around the
non-interacting free-field theory consisting only of quadratic (and lower) powers of the fields.

Rules:

1. Start with the quadratic (and lower) terms in the Lagrangian and extract from them
the kinetic and mass terms.

2. For this, redefine the field variables to put the kinetic terms in canonical form and
diagonalize the mass matrices.

3. Add the terms higher than quadratic (in terms of the redefined and now-canonical/diagonal
fields) and compute perturbatively with Feynman diagrams.

e.g. 1.a) Real Scalar Fields; φi, i = 1, 2, . . . n label different scalars.

L = C iφi +
1

2
Z ijηµν∂µφi∂νφj −

1

2
(M2)ijφiφj + (H.O.T.) (23)

Here, C i is a constant while Z ij and (M2)ij are real, strictly positive-definite, symmetric
matrices.
Step 1: remove the linear term with φi = φ′

i + αi with αi a constant.
In terms of the new field variables,

L = (const) + (C i − (M2)ijαj)φ
′
i +

1

2
Z ij∂φ′

i∂φ
′
j −

1

2
(M2)ijφ′

iφ
′
j + (H.O.T.) (24)

By choosing the αi judiciously, we can remove the linear term. We don’t care about the
constant term that is generated.

Step 2: make the kinetic term “canonical”.
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For this, rotate the fields by φ′
i = P j

i φ
′′
j . We can choose P j

i to be a product of an or-
thogonal matrix times a diagonal matrix. The orthogonal matrix should diagonalize Z ij →
diag(z1, z2, . . . zn) while the diagonal matrix is diag(z−1

1 , z−1
2 , . . . z−1

n ). Note that for the field
theory to be sensible, there should be no negative or zero eigenvalues. This produces

L = (const) +
1

2
δij∂φ′′

i ∂φ
′′
j −

1

2
M̃2ijφ′′

i φ
′′
j + (H.O.T.) (25)

Here, (M̃2)ij = P i
k(M

2)klP j
l .

Step 3: diagonalize the mass matrix.
To do so, make an orthogonal transformation φ′′

i = Oj
iφ

′′′
j . This is always possible because

the mass matrix is real symmetric. Note that this won’t mess up the canonical form of the
kinetic term. At the end of the day, we get

L = (const) +
1

2

∑

i

[(∂φi)
2 −m2

iφ
2
i ] + (H.O.T.) (26)

The (H.O.T.) stuff will now be a mess, but this is just something we’ll have to deal with.

e.g. 1.b) Complex Scalar Field

The canonical form is

L = ηµν∂µφ
∗∂νφ−m2|φ|2. (27)

Note that we can also write this in terms of two real scalar fields, φ = (φR + iφI)/
√
2.

e.g. 2. Dirac Fermion Field

The canonical form is

L = ψ̄(i∂µγ
µ −m)ψ + (H.O.T.) (28)

e.g. 3. Vector Field

The canonical form is

L = −1

4
FµνF

µν +
1

2
m2AµA

µ + (H.O.T.) (29)

Here, Fµν = ∂µAν − ∂νAµ. The signs of the two terms here might look a bit funny, but
they’re related to the fact that A0 is not entirely independent. Instead, it can be related to
the other components by the constraint ∂µA

µ. Incorporating this requirement leads to the
funny-looking kinetic term. The sign of the mass term is sensible once you remember that
AµA

ν = (A0)2 − ~A· ~A. (See B&M for more details.)
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3 Quantum Electrodynamics (QED)

This is the theory of charged fermions interacting with the photon. It consists of a massless
vector for the photon and a set of charged fermions. The Lagrangian is

L = −1

4
FµνF

µν +
∑

i

ψ̄i[iγ
µ(∂µ + ieQiAµ)−mi]ψi (30)

Sometimes we’ll write Dµ = (∂µ + ieQiAµ).

From this one can derive the following Feynman rules: Here, u(p, s) and v(p, s) are 4× 1

−i 2

(p  − m  )2 2

Incoming Fermion

Incoming Anti−Ferm

Outgoing Fermion

Outgoing Anti−Ferm

Incoming Photon

Outgoing Photon 

Internal Photon

Vertex

u(p,s)

v(p,s)

u(p,s)

v(p,s)

    (p,   )

    (p,   )ε

ε

λ

λ

µ

µ
∗

µν

i(p + m)

−ieQγµ

ps

s

s

s

p

p

p

µ, λ

µ, λ

Internal Fermion

µ

µ ν

p

p

p

p
η p

fermion and anti-fermion spin vectors for momentum p and spin s, with ū = u†γ0. We have
also written p/ = pµγ

µ. For photons, ǫµ(p, λ) is the polarization vector for the polarization
state λ. Recall that photons have two independent transverse polarizations.

To compute a quantum mechanical scattering amplitude:

1. Draw all possible Feynman diagrams at the desired level of perturbative approximation.
(We’ll stick to the leading order here.)

2. For each diagram, follow the rules listed above to find the mathematical expression
for each diagram. For closed loops, integrate over internal loop momentum and add a
factor of (−1) if it is a fermion loop.

3. Sum the expressions for each of the diagrams. Include any necessary symmetry factors
for identical initial or final states. In the case of fermions, diagrams that differ only by
the interchange of two identical fermion lines come in with a relative factor of (−1).

4. The result of all this is (−i) times the amplitude.

6



e.g. 1.a) Amplitude for e+e− → µ+µ−
The Feynman diagram for this process is shown below. Following the rules above, we find
the amplitude

−iM = ie2QeQµ

1

p2
(ū3γ

µv4)(v̄2γ
νu1)ηµν . (31)

Here, p = (p1 + p2) = (p3 + p4), and the subscripts label the momenta of the spinors (spinor
indices are contracted).

+

γe µ

µp

p

p

1

2

3

4

p−

+

−

e

Once we have the amplitude, all we need to do is specify the initial and final fermion spin
or photon polarization states and square the result to find the squared matrix element into a
scattering cross section or a decay rate. However, in many cases we are interested only in the
inclusive unpolarized cross-section. For this, we should average over initial spin/polarization
states and sum over final spin/polarization states. There are a number of tricks for doing
this that make use of the completeness properties of the fermion spinors and the photon
polarization vectors.

Spinor Tricks:

(p/−m) u(p, s) = 0 = (p/+m) v(p, s) (32)
∑

s

ua(p, s)ūb(p, s) = (p/+m)ab (33)

∑

s

va(p, s)v̄b(p, s) = (p/−m)ab (34)

γ0(γµ)†γ0 = γµ (35)

tr(γµγν) = 4ηµν (36)

tr(γµγνγλγκ) = 4(ηµνηλκ + ηµκηνλ − ηµληνκ) (37)

tr(γµγνγλγκγ5) = −4iǫµνλκ (38)

{γµγν} = 2ηµν (39)

{γ5, γµ} = 0 (40)

Additional tricks can be found in Ref. [5]. Note that the subscripts in Eqs.(33,34) are
spinor indices.

Photon Tricks:
∑

λ

ǫµ(p, λ)ǫ
∗
ν(p, λ) = −ηµν + (stuff you can ignore). (41)

7



e.g. 1.b) Squared and summed amplitude for e+e− → µ+µ−
What we want is

“|M|2′′ =
1

2
× 1

2
×

∑

s1,s2,s3,s4

|M(s1s2 → s3s4)|2 (42)

=
1

4
(e2QeQµ

1

p2
)2
∑

s...

ηµν(ū3γ
µv4)(v̄2γ

νu1)[ηαβ(ū3γ
αv4)(v̄2γ

βu1)]
†.

Let’s first conjugate the 34 spinor piece. We have

(ū3γ
αv4)

† = v†4(γ
α)†γ0(u†3)

† (43)

= v†4γ
0γ0(γα)†γ0u3

= v̄4γ
αu3.

The 12 piece goes through similarly. Next, we can assemble the 12 and 34 pieces and use
the spinor completeness relations. For the 34 part, we get

∑

s3,s4

ū3γ
µv4 v̄4γ

αu3 (44)

=
∑

s3

∑

s4

ū3aγ
µ
abv4bv̄4cγ

α
cdu3d (45)

= (p/+m3)daγ
µ
ab(p/−m4)bcγ

α
cd

= tr[(p/+m3)γ
µ(p/−m4)γ

α]

= 4(pµ3p
α
4 + pα3p

µ
4 − p3 ·p4ηµα)− 4m3m4η

µα. (46)

I’ve written out the spinor indices in gory detail here, but you can skip this part once you
get the hang of it. Combining with the 12 piece and contracting indices, the result (in the
limit p2 ≫ m2

e,µ such that we can neglect the masses) is

“|M|2′′ = 8(e2QeQµ

1

p2
)2[(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3)]. (47)

Working in the centre-of-mass (CM) frame, we have (after applying energy and momentum
conservation)

p1 = (q, 0, 0, q), p2 = (q, 0, 0,−q) (48)

p3 = (q, q sin θ, 0, q cos θ), p4 = (q,−q sin θ, 0,−q cos θ) (49)

The summed and squared matrix element is then

“|M|2′′ = 16e4Q2
eQ

2
µ(1 + cos2 θ). (50)

The two observable quantities we are most interested in calculating are scattering cross
sections and decay rates.
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Cross Sections (2 → n)

dσ(a+ b→ 1 + . . .+ n) =
1

|va − vb|
1

4EaEb

(dp̃1) . . . (dp̃n) (2π)
4δ(4)(pa + pb −

∑

i

pi)“|M|2′′(51)

where

dp̃i =
d3pi

(2π)3Ei

(52)

Decay Rates (1 → n)

dΓ(a→ 1 + . . .+ n) =
1

2Ea

(dp̃1) . . . (dp̃n) (2π)
4δ(4)(pa + pb −

∑

i

pi)“|M|2′′ (53)
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