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1 Introduction

Neutrino oscillation is the first known case where there is a good evidence that
the standard model is an incomplete theory. The standard model predict that the
lepton number L is conserved and as a consequence the neutrinos are massless. Also
each νl only participate in the charged-current weak interaction together with its
corresponding charged lepton.

Recent data from neutrino experiments involving neutrinos of relatively low en-
ergy, propagating over long distances, show that the lepton flavour is not conserved
and neutrinos of one flavour oscillate into neutrinos of other flavours. However we
could extend standard model to permit the neutrino masses that can describe the
observed neutrino oscillation.

2 Neutrino masses

Standard model is the most general theory which is consistent with general princi-
ples plus two assumption: renormalizability and the given particle content. Since
the experiments show that this theory is not complete, one of this two assumptions
must be breaking down. So there are two way to extend the standard model: ei-
ther introduce additional light degrees of freedom or allow the non-renormalizable
interactions in the theory.

2.1 Sterile neutrinos

We start by considering that the set of fermionic fields chosen for the standard model
is incomplete. Since LEP (Large Electron-Positron Collider) excluded new particles
coupled to the Z boson and lighter than Mz/2, we can only add light right-handed
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neutrinos νR. These new fields must be singlet under all SUc(3)× SUL(2)× UY (1)
in order to allow the gauge invariant Yukawa interaction with the lepton doublet L,
in other words they must be sterile.

LN = −1

2
ν̄ri6∂νR −

1

2
Mν̄RνR − (λN L̄φ̃νR + h.c.)

Gauge invariance allows a Majorana mass term 1
2
Mν̄RνR that breaks lepton number

(It breaks the total lepton number by two units). Neutrinos can have Dirac masses
like all other fermions if we impose the conservation of lepton number by hand (in
other words if we set M = 0). In this case the neutrino Yukawa coupling gives the
Dirac neutrino mass mν = λNv ≈ 0.1eV for λ ∼ 10−12.

2.2 Higher dimension interactions

Next suppose that we do not enlarge the field content of SM. We can still explain the
neutrino oscillations by allowing our theory to have non-renormalizable interactions.
These interactions could be the consequence of new physics at high energy and the
standard model is just the low energy effective theory of this new physics. We
need to find the lowest-dimension non-renormalizable interactions. There is only
one kind of dimension-5 operator which is allowed by the SM particle content and
gauge symmetries: φ̃αL̄

αLβφ̃β.
Inserting the Higg vev v, this operator gives a Majorana neutrino mass term

,1
2
mν ν̄LνL, for left-handed neutrinos with mν = v2

Λ
≈ 0.1eV for Λ ∼ 1014GeV . Since

this scale is so large we can neglect the still higher dimension interactions. It also
shows that if there are only three neutrinos, the fact that their masses are so small is
just a natural consequence of the scale of the new lepton-number-violating physics
being very large.

2.2.1 The see-saw mechanism

We can ask what is the possible origin of this 5-dimension operator. However we
cannot discriminate different sources since whatever is the source of φ̃αL̄

αLβφ̃β op-
erator, this operator is all what we can see at low energies.

Tree level exchange of three different types of new particle can generate neutrino
masses: right-handed neutrinos and fermions or scalar SU(2)L triplets. This mech-
anism is called see-saw mechanism.

Type I see-saw: extra fermion singlets
The first model is to add new heavy sterile right-handed neutrinos to the theory.

They can have both a Yukawa interaction and a Majorana mass term.

L = LSM −
1

2
N̄ii6∂Ni + (−1

2
M ij

N N̄iNj − λijN L̄iφ̃Nj + h.c.)
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So the neutrinos have a 6× 6 Majorana/Dirac mass matrix:

( νL N

νL 0 λTNv
N λNv MN

)

In practise we do not know the values of λN and MN but we can still consider two
interesting limits:

1. MN � λN : In this case we will have 3 almost pure right-handed neutrinos
with heavy Majorana masses MN and 3 almost pure left-handed neutrinos with light
Majorana mass mν = −(vλN)TM−1

N (vλN). Now Integrating out the heavy neutrinos
gives the following non-renormalizable effective Lagrangian:

Leff = −(λTNM
−1
N λN)ijφ̃αL̄i

α
Lβj φ̃β

2. MN � λN : In this case we have 3 Dirac neutrinos Ψ = (νL, N̄) with mass
mν = λNv. As we saw earlier, this means that in order to get the observed neutrino
masses one needs λN ∼ 10−12.

As we saw, since Majorana masses arises naturally but one needs to force the
theory to have Dirac masses (impose the conservation of lepton number and setting
MN to zero), the Majorana neutrinos are considered as more likely.

Type III see-saw: extra fermion triplets
We can instead add extra fermion N which is a triplet under SUL(2) with zero

hypercharge. One can show that as long as MN � v everything is the same as type
I: triplet exchange generates the Majorana mass operator φ̃αL̄

αLβφ̃β.

Type II see-saw: extra scalar triplet
One can also add a new complex Higgs scalar, T, which carries hypercharge -1,

is a colour singlet and a triplet under SUL(2). Now after writing the most generic
renormalizable Lagrangian and integrating out the heavy triplet one can generate
the Majorana mass operator.

2.3 the PMNS mixing matrix

We extend the SM by adding to its Lagrangian the non-renormalizable operator
φ̃αL̄

αLβφ̃β and no new fields. This operator is going to give the Majorana neutrino
masses. We can diagonalize the neutrino mass matrix by redefining the neutrino
fields:

νl = Vliνi

where V is a unitary matrix which is very similar to CKM mixing matrix for quarks.
This mixing matrix may be parameterized in terms of mixing angles and phases such
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that V = UK with K = Diag(eiα1/2, eiα2/2, 1) and

U =

 c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s23s12 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23


In here cij = cos θij and sij = sin θij where θij’s are the mixing angles. The quantities
δ, α1 and α2 are CP-violating phases. If the neutrinos are Dirac fields we can
rotate them to remove the phases αi, that is why they are also called the Majorana
phases. The CKM-like matrix, Uai, is called the PMNS matrix for Pontecorvo, Maki,
Nakagawa and Sakata.

3 Neutrino oscillation

Neutrinos are usually created by charged-current weak interaction. This means
that they are produced in association with a charged lepton and therefore they are
created in flavour eigenstates. But the eigenstates of time evolution operator are
mass eigenstates not the flavour eigenstates. So when neutrinos propagate and reach
the detector, another charged-current reaction, the detector probes the final flavour
state which might not be the same as initial state if the mass and flavour eigenstates
are different. This is called neutrino oscillation.

3.1 Vacuum oscillation

Suppose a neutrino is produced in a flavour eigenstate, νa. It then propagates to
a detector at distance L in time t, where it is measured to have flavour νb. The
amplitude for this process is:

〈νb(L, t)|νa(0.0)〉 = 〈νb|exp(−iĤt+ iP̂ .L)|νa〉

=
∑
i

∑
σ

∫
d3ke−iEi(k)t+ik.L〈νb|νi(k, σ)〉〈νi(k, σ)|νa〉

Here Ĥ and P̂ are the time evolution and transition operators and we have inserted
a complete basis of mass eigenstates. Because the neutrinos are almost massless we
can assume L = t. Small deviation from L = t leads to just a species-independent
phase which is not important for neutrino oscillation. We can take E to be a known
variable since in typical application the neutrino energy is measured accurately.
Given E, we can use the approximation that neutrinos are ultra-relativistic and

E − |k| = m2
i

2E
. Thus up to an irrelevant overall phase, the transition amplitude is

〈νb(L, t)|νa(0.0)〉 =
∑
i

e−im
2
iL/(2E)〈νb|νi〉〈νi|νa〉

=
∑
i

e−im
2
iL/(2E)VbiV

∗
ai
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And the probability for the oscillation (νa → νb) is

P (νa → νb) = δab − 4
∑
i>j

Re(UbiU
∗
bjUa,jU

∗
ai) sin2(φij) + 2

∑
i>j

Im(UbiU
∗
bjUa,jU

∗
ai) sin(2φij)

where φij =
∆m2

ijL

4E
and ∆m2

ij = m2
j − m2

i . Notice that in the above equation the
Majorana phases, eiαi , cancel each other. Therefore one can not determine if the
neutrinos are Dirac or Majorana just based on the oscillation experiments.

Using the above equation we see that:

P (νa → νb;U
∗) = P (νb → νa;U) = P (ν̄a → ν̄b;U)

The second equality is correct if CPT invariance holds. Thus the probability for
oscillation of an antineutrino is the same as that for a neutrino, if we replace the
mixing matrix U with its complex conjugate. So if U is not real, the CP is violated:
the neutrino and antineutrino oscillation probabilities are different.

The oscillation length is defined by

λ =
4πE

∆m2
= 2.48km

E

GeV

eV 2

∆m2

At the limit L � λ the probability becomes diagonal (because the PMNS matrix
is unitary). Thus in order to see the oscillation, one needs to increase the length
between the source and the detector and decrease the energy of neutrinos.

If one squared-mass splitting is much bigger than the other ones, which is often
the case, then we can consider the two-neutrino special case. The unitary matrix
Uai now can be chosen:

U =
(

cos θ sin θ
− sin θ cos θ

)
In this case the oscillation probability is

P (νa → νa) ' 1− sin2(2θ) sin2(
∆m2L

4E
)

P (νa → νb 6= νa) ' sin2(2θ) sin2(
∆m2L

4E
)

In a realistic setup, one needs to average over some energy range ∆E and some path-
length range ∆L. In the limit that L� λ this averaging leads to 〈sin2(∆m2L

4E
)〉 = 1

2

and

P (νa → νa) = 1− 1

2
sin2(2θ), P (νa → νb 6= νa) =

1

2
sin2(2θ)

We could re-drive the above transition probability by combining the probabilities
rather than amplitudes.
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3.2 Oscillation in normal matter

Although the neutrino interactions are weak, the presence of matter can have sig-
nificant effect on the way neutrinos propagate. These effects are somehow similar to
the fact that the speed of light travelling through a transparent medium is changed
by the index of reflection which is different fo different polarizations of light. The
same thing happens for the neutrinos. Because the normal matter is composed by
electron rather than by muon or tau, the νe interact differently than the νµ and
ντ and so the refraction index would be flavour-dependant. This effect in known
as MSW (Mikheyev Smirnov Wolfenstein) effect. Now suppose the neutrinos are
propagating in an environment like the interior of the sun. Neutrinos can interact
with other particles through both neutral- and charged-current interactions. In the
neutral-current interaction, since scattering of νl on electrons and quarks is the same
for all flavours, it shifts all the neutrino types by the same amount and thus it is not
important in neutrino oscillation. On the other hand there is an interesting effect
due to νee scattering mediated by the W boson which is described by

Lcc =
4GF√

2
[iν̄eγµPLνe][iēγµPLe]

But the iēγµe term is just the the electron current operator and its mean value
in the medium rest frame is 〈Jµe 〉 = Neδ

µ
0 where Ne is the local electron number

density. The iēγ5e term gives the axial electron current which vanishes for the
parity-invariant environment. So the effective matter Hamiltonian density is

〈Heff〉 = An̄ulγ0PLνl

where A is called matter potential.

A =
√

2GF [Nediag(1, 0, 0) + constant× I]

Usually the neutrino index of refraction is so closed to 1 (n− 1 ' A
Eν
� 1) that we

can not observe the optical effects but since A
(∆m2/Eν)

can be equal or even larger
than one the presence of matter can significantly affect oscillation. Let’s consider
the case with two neutrinos again. If we add this effective MSW Hamiltonian to the
Hamiltonian which describes the propagation of neutrinos in the vacuum and then
drop all terms proportional to the unit matrix, we find the following effective mass
matrix within the normal matter.

δH =
GFNe√

2

(
1 0
0 −1

)
+

∆m2

4E

(− cos 2θ sin 2θ
sin 2θ cos 2θ

)
Which we can re-write in terms of an effective medium-dependent mass splitting
and mixing angle:

δH = ∆m

(− cos 2θm sin 2θm
sin 2θm cos 2θm

)
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where

∆m = [(
GFNe√

2
)2 − (

GFNe√
2

)
∆m2 cos 2θ

2E
+ (

∆m2

4E
)2]1/2

sin 2θm = (
∆m2

4E
)
sin 2θ

∆m

Notice that if
GFNe√

2
=

∆m2

4E
cos 2θ

then the medium-dependent mixing becomes maximal (sin 2θm = 1) even if θ � 1.
This is called resonance.

Now let’s study the effect of matter in propagation of solar neutrinos. The
experimental data show that only two neutrino mass eigenstates are significantly
involved in the evolution of solar neutrinos. νe is created at the core of sun. The
probability of this neutrino to be produced in the heavier mass eigenstate is then
sin2 θm and the probability to be in the lighter state is cos2 θm. Since the oscillation
wavelength is much smaller than the radius of sun, neutrinos propagate for many
oscillation wavelengths and the phases average out :we have to combine probabilities
rather than amplitudes. If the density inside the sun changes very slowly (adiabatic
approximation) each neutrino mass eigenstate remains the same. When they arrive
at earth, the appropriate mixing angle is the vacuum one and so the amplitude of
the mass eigenstate to be measured as electron type is controlled by sin θ and cos θ.
Therefore

P (νe → νe) = sin2 θm sin2 θ + cos2 θm cos2 θ

As we can see from this equation, for low energy neutrinos we have ∆m2/(4E) �
GFNe/

√
2 at the solar center, so θm = θ and the survival probability becomes

sin4 θ+cos4 θ = 1−sin2 2θ. On the other hand for high energy neutrinosGFNe/
√

2�
∆m2/(4E) at the center of sun, so θm ' π/2 and the probability of observing νe
becomes sin2 θ.

4 Experiments

There are several kind of experiments with many different detector technology which
provide a good evidence that the neutrinos do change flavour in the nature. We
discuss this evidence.

4.1 the atmospheric evidence

The atmospheric neutrinos are produced in the Earth’s atmosphere by the cosmic
rays. Primary cosmic rays hit the nuclei of air in the upper part of atmosphere and
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produce mostly pions. Charged pions then decay to µ and νµ. The muons decay in
turn into µ− → e−ν̄eνµ and µ+ → e+νeν̄µ. Therefore one expects to detect a νµ : νe
ratio close to 2 : 1, but this ratio is seen only for downward moving neutrinos. For
the upward moving neutrinos (the ones coming from other side of the Earth) this
ration is close to 1 : 1.

One can argue that since the the flux of cosmic rays which lead to neutrinos
with energies of order a few GeV is isotropic, these neutrinos are produced at the
same rate all around the Earth. Thus the flux coming down from the Zenith angle
θz must be equal to the flux coming up from angle π − θz.

The data from the underground Super-Kamiolande (SK) detector are shown in
Fig.1 . The crosses are the data and their errors, the thin lines are the best-fit
oscillation expectation and the thick lines are the no-oscillation expectation. As you
can see, for multi-GeV atmospheric muon neutrinos, the event distribution doesn’t
have the θz ⇐⇒ π− θz symmetry, the observed νµ flux coming up from zenith angle
π−θz is half that coming down from angle θz. This can be explained by the fact that
upward-going muon neutrinos have to travel a longer distance to reach the detector,
so they have more time and distance to oscillate way into another flavour.

Fig.1 also shows that the zenith-angle distribution of e events show no asymmetry
and the data are compatible with no oscillation. thus we can say that nothing
happens to νe and that νµ oscillate into ντ .

Since atmospheric muon neutrinos are oscillating into another flavour, one would
expect that a fraction of muon neutrinos generated in accelerators should disappear
when they reach a sufficiently distant detector. Both K2K and MINOS experiments
have observed this disappearance. K2K and MINOS measure the νµ flux once in a
detector near the source before any oscillation has happened and once in a detector
far away from the source (250 km in the case of K2K and 735 km in the case of
MINOS). The results from these two experiments are consistent with two-neutrino
oscillation.

All these observations point to the parameter

sin2 2θatm = 1.02(4) (36◦ < θatm < 54◦, 99%CL)

∆m2
atm = |m2

3 −m2
2| = 2.5(3)× 10−3eV 2 (1.7− 3.3, 99%CL)

and since we saw that νµ almost entirely oscillate to ντ then

θatm = θ23 θ13 ' 0
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Figure 1: SK atmospheric data for multi-GeV neutrinos: Number of e+−(red) and
of µ+−(blue) events as a function of direction of scattered lepton.(From A. Strumia
and F. Vissani, arXiv:hep-ph/0606054v3)

4.2 The solar evidence

Solar neutrino experiments were the first evidence for neutrino oscillations. The
nuclear processes in the sun produce only νe, the experiments have shown that
the solar νe flux arriving at the Earth is below the one expected from neutrino
production calculations. Around the center of sun the energies are produced through
the following reaction:

4p+ 2e→ 4He + 2νe

This reaction proceeds in a sequence of steps which are summarized in Fig.2 .
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2p → d e+ νe 2p e → d νe

d p → 3He γ

23He → α 2p 3He α → 7Be γ 3He p → α e+ νe

99.75% 0.25%

86% 0.00002%

7Be e → 7Li νe
7Be p → 8B γ

7Li p → 2α 8B → 2α e+ νe

99.9% 0.01%

(pp) (pep)

(hep)

(Be)

(B)

14%

Figure 2: 4p + 2e → 4He + 2νe chain inside the sun. (From A. Strumia and F.
Vissani, arXiv:hep-ph/0606054v3)

Sudbury Neutrino Observatory (SNO) detects the high-energy solar neutrinos
from B decay via the following reactions

ν + d→ e− + p+ p

ν + d→ ν + p+ n

Only νe participates in the first reaction, thus it measures the flux φ(νe) of νe. In
the second reaction, all the three flavour neutrinos can participate, so it measures
φ(νe) + φ(νµ,τ ). According to SNO:

φ(νe)

π(νe) + φ(νµ,τ )
= 0.340± 0.023(stat) +0.029

−0.031(syst)

This shows that φ(νµ,τ ) is not zero and some of νe produced in the sun do change
flavour. This behaviour implies that a fraction of ν̄e generated in a reactor disap-
pear into the antineutrinos of another flavour if they travel more than a hundred
kilometres to reach the detector. The KamLAND experiment confirms this disap-
pearance. In this experiment, ν̄e typically travel 180 km to reach the detector. The
result of KamLAND is consistent with two-neutrino oscillation. Since atmospheric
oscillations have negligible effect on solar neutrinos and KamLAND data (νµ → ντ
oscillation is unimportant for these experiments) and the mixing angle θ13 is so
small, we can conclude that the solar νe → νµ,τ oscillation depends only on two
parameters:

∆m2
sun = ∆m2

12 θsun = θ12
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The numerical value of these parameters are found by experiments to be:

0.40 ≤ tan2 θsun ≤ 0.50 (30◦ < sin θsun < 38◦, 99%CL)

∆m2
sun = 8.0(3)× 10−5eV 2 (7.1− 8.9, 99%CL)

5 Questions to be answered in the future

Even though now we have strong evidence for neutrino oscillation, there are still
many open questions to be answered by future experiments. we address a few of
them.

1. Are the neutrino mass eigenstates Majorana or Dirac?

As we saw oscillation experiments are insensitive to the Majorana phases α1

and α2 and therefore they can not determine whether the neutrinos are Majo-
rana or Dirac. Can we confirm this experimentally? The promising approach
is to search for neutrino-less double beta decay(0νββ).

In double beta decay, two neutrons in the nucleus are converted into two
protons and emit two electrons and two electron antineutrinos. If the neutrinos
where Majorana (antineutrino and neutrino are the same particle) then the
final two antineutrinos in double beta decay can annihilate. This process is
forbidden in the SM model since the lepton number is violated. The decay
rate of the process is equal to Γ = G|M |2|mββ|2 where G is just the phase-
space factor and |M |2 is the matrix element, and mββ is the so-called effective
Majorana neutrino mass.

|mββ| = |
∑
i

miU
2
ei|

The discovery of 0νββ proves that the neutrinos are Majorana. Right now
the best limit on the decay lifetime comes from 76

32Ge → 76
34Se + 2e− process

(1.9× 1025 years) which leads to constraint |mββ| < 0.35eV .

2. Is the mass pattern a normal hierarchy or an inverted one?

As we discussed in the previous section, from oscillation experiments we found:

∆m2
atm = |∆m2

23| > ∆m2
sun = |∆m2

12|

But neutrino oscillations do not fix the absolute value of each of the masses
separately and leave us two possibilities: a positive ∆m2

23 or normal hierarchy
which means that the nearly degenerated pair ν1 and ν2 are less massive than
ν3. The other possibility is that m1,m2 > m3 which is called the inverted
hierarchy. We can find which of these two case is correct by finding the mass
of each neutrino.

11



3. What are the masses of neutrino mass eigenstates?

Oscillation experiments just tell us about the difference of squares of masses,
not the distance of the entire pattern from zero. We can use beta decay or
neutrino-less double beta decay to learn about the masses of mass eigenstates.
Also one can obtain some information from cosmology or astrophysics. Cos-
mological data roughly probe the sum of neutrino masses and the current limit
is
∑
imi > (0.17− 2.0eV ) depending on the cosmological assumptions.

4. Can we observe a CP violation behaviour by studying neutrinos?

We saw that from data there is a bound on θ13 which is s2
13 < 0.032. By looking

at the PMNS mixing matrix, we find that the CP-violating phase δ only enters
the U in combination with s13. Thus the size of CP violation in oscillation
depends on s13. The CHOOZ and DOUBLECHOOZ experiments are going
to give us a better bound on this mixing angle θ13. The baryon asymmetry
of the universe indicates that some CP violation had to occurred during the
early universal. Since the known source of CP violation in the quark sector is
not large enough, some sort of leptonic CP violation must be responsible for
this baryon asymmetry.

To answer these questions, we need to have progress both in the future oscilla-
tion experiments (such as solar, atmospheric and reactor experiments) and future
non-oscillation experiments (such as β decay, neutrino-less double beta decay exper-
iments and cosmological observations).
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