PHYS 526 Homework \#11

Due: Nov. 26, 2013
0. Read Ch. 9 of Peskin and Schroeder and notes-11.

1. Suppose electrons and muons both interact with a new massive vector boson V^{μ} of mass M according to

$$
-\mathscr{L}_{V}=g_{e} V^{\mu} \bar{e} \gamma^{\mu} e+g_{\mu} V^{\mu} \bar{\mu} \gamma^{\mu} \mu
$$

Compute the total unpolarized cross section for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$in the CM frame and write you result in terms of $s=\left(p_{1}+p_{2}\right)^{2}$ and M. You may assume that the muon and electron masses are negligible compared to M and s, and that the usual photon contribution to the process is small enough to be ignored.
Hint: consult hw-10 for how to deal with a massive vector.
2. Gaussians
a) Compute $\int_{0}^{\infty} d x x e^{-\alpha x^{2}}$.
b) Evaluate $\int_{-\infty}^{\infty} d x e^{-\alpha x^{2}}$ by multiplying by $\int_{-\infty}^{\infty} d y e^{-\alpha y^{2}}$ and changing variables to polar coordinates (r, ϕ).
c) Derive a general formule for $\int_{0}^{\infty} d x x^{2 n+1} e^{-\alpha x^{2}}$ for $n \in \mathbb{Z}>$ by differentiating the result of a) with respect to α.
d) Derive a general formula for $\int_{-\infty}^{\infty} d x x^{2 n} e^{-\alpha x^{2}}$ for $n \in \mathbb{Z}^{>}$by differentiating the result of b) with respect to α.
3. Complex Scalar Path Integral

Consider the free complex scalar theory

$$
\mathscr{L}=|\partial \Phi|^{2}-m^{2}|\Phi|^{2} .
$$

We can quantize the theory using path integrals. The generating functional in this case is

$$
Z[J, \bar{J}]=\int\left[\mathscr{D} \Phi \mathscr{D} \Phi^{*}\right] \exp \left(i S^{\prime}\left[\Phi, \Phi^{*}\right]+i \bar{J} \cdot \Phi+i \Phi^{*} \cdot J\right)
$$

where $S^{\prime}=S+i \epsilon \int d^{4} x|\Phi|^{2}$.
a) Solve for the generating functional by evaluating the functional integral.

Hint: there are many ways to do this. One of them is to use $\Phi=\left(\phi_{1}+i \phi_{2}\right) / \sqrt{2}$ and to note that $\left[\mathscr{D} \Phi \mathscr{D} \Phi^{*}\right]=\left[\mathscr{D} \phi_{1} \mathscr{D} \phi_{2}\right]$ up to a possible overall constant that cancels out when we compute expectation values.
b) Use your result from a) to solve for all the two-point functions. Along the way, you should show how to relate the generating functional to time-ordered operator expectation values in the vacuum.

