PHYS 526 Homework #4
Due: Oct. 8, 2013

0. Read Chs. 4.4-4.6, 7.1-7.2 of Peskin & Schroeder, and Chs. 10-12 of Srednicki.

1. Do the inductive step for proving Wick’s theorem for the specific case of (n = 2) —
(n = 3). In other words, assume Eq. (63) is true, and use it to express T{¢1¢2¢3} in
terms of normal-ordered operators (i.e. Eq.(64)). You may take t; > to > t3.

2. Consider the real scalar theory with AV = \¢*/4!.

a) Compute the connected 4-point function at order A starting directly from the
master formula. Use your result to formulate Feynman rules for this theory. In
particular, what is the form of the fundamental vertex and what is its value?
Hint: “connected” means that all the vertices and external points are connected
to each other in some way.

b) Use these Feynman rules to evaluate the full (i.e. connected and disconnected)
2-point function to order .

c¢) Evaluate the connected part 4-point function to order 2.

d) Evaluate the 89-point function to order \'7.
In all four cases, you can leave your result in terms of Dy functions.

3. In the real scalar theory with AV = g¢?/3!, evaluate the 4-point function G (zy, x4, 3, 74)
up to order ¢? in perturbation theory. Draw the Feynman diagrams as well. You can
leave your answer in terms of D functions. There are lots of terms, and you don’t have
to write out all of them. However, show at least one representative of each different
type of term contributing to the full result.

4. A prelude to external states. .
Consider the “external” momentum states a'(7)|0) and (0|a(k). (These aren’t quite
external states for AV # 0, but they are close.) We can generalize Wick’s theorem to
compute matrix elements for these “external” states. Define the contractions

il = lag,af],  or(0)a] = [or(),al),  axer(x) = [ax, ér(x)] -

The generalization of Wick’s theorem is then

(ar) T{o1, ... ¢, Hal)" = N {(ar)’¢1 ... dm(al)" + all contractions} .

a) i) Compute WLL and c’z;jgbf(x).
ii) Show that this generalization of Wick’s theorem is all we need to compute the
matrix elements of time-ordered products of field operators between incoming
and outgoing “external” momentum states.



b)

c)

iii) Show that if all incoming momenta are different from all outgoing momenta,
the contractions between a;, and a; can be neglected.

Use these results to compute the leading (in powers of ¢) non-zero contribution
to the matrix element

Olati)al) T {expl-i [a% gai2)/31 Gl D)

Assume that p; and p5 are different from p3 and py, and leave your result in terms
of D functions.

Evaluate the result of part b) by plugging in the explicit form of Dp(x — y).

5. Complex scalars, particles and anti-particles.

Consider the quantum theory of a free complex scalar field from question # 2 in hw-03.
This theory has two types of particle excitations, corresponding to the two creation
operators a'(p) and bT(lg). These two particle types have equal masses but opposite
values of the conserved charge. For this reason, we say that one particle type is a
particle and the other is its anti-particle.

a)
b)
c)

d)

Compute (0| (2)|Pla))s (Dlap) | P(2)]0), (0]®F(2)]P(ap)), and (Pap|PT(x)|0), where
7)== a'(p)]0), |ps) := bl (p)|0), and so on.

Show that ®7(z)|0) is a linear combination of |p,) states, (0|®f(z) is a linear
combination of (pp| states, and find the corresponding result for ®(x) as well.
Use this to argue that charge conservation implies (®;®,) = (®1®1) = 0, but
allows (®;®1) and (®]d,) to be non-zero (where ®; = d(z1), ...).

Generalize the generalized Wick’s theorem from #4 to this theory for comput-
ing matrix elements of time-ordered field operators between external momentum
states in the free theory. Just state the result, don’t actually try to prove it.

Use your generalization to compute the following matrix elements in the free
theory:

) (@ FalT{ 12 ()]} 7o 7o)
) (7, BT [z 9|} |7 7).
i) (G, Ry T{[d*z |2 (2)|*} |7, 72).

Relate your results to charge conservation. You may assume that the initial and
final momenta are all different.



