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We turn next to study theories with both fermions and interactions.

1 Perturbation Theory

As a specific example, we will study the interacting field theory of a real scalar φ and a Dirac
fermion Ψ given by

L = Ψ̄i\∂Ψ−mΨ̄Ψ +
1

2
(∂φ)2 − 1

2
M2φ2 − y φΨ̄Ψ . (1)

The last term is evidently the interaction piece, ∆H = yφΨ̄Ψ. It is called a Yukawa
interaction (and y is called the Yukawa coupling) after H. Yukawa who first suggested this
form to describe the strong interaction between two nucleons (fermions) and a pion (scalar).

1.1 The Master Formula

We already know all the energy eigenstates of the theory in the limit of y → 0. They are just
free particle states containing some number of scalars, fermions, and antifermions, all with
definite momentum (and spin for the fermions). However, as soon as we turn on the coupling,
life becomes much more complicated. Even so, we can still study the interacting theory as
an expansion in the coupling around the free theory. For this, we make two assumptions:

1. There exists a unique vacuum |Ω〉 of the full theory with pµ|Ω〉 = 0.

2. For each field in the Lagrangian, there exists a set of distinct one-particle momentum
eigenstates (possibly with several spin/helicity sub-states). Such states correspond to
isolated poles in the two-point functions of the elementary fields.

Note that these are both assumptions. They turn out to be valid in many theories with
small couplings, but they are also known to be broken in theories with large couplings. Not
surprisingly, pertubation theory does not work very well at all at strong coupling, and the
physical states might not correspond to fields in the Lagrangian (or even be particle-like).

The first things we will attempt to compute are the n-point functions, the expectation
values of time-ordered products of fields. For this, we use the obvious generalization of the
master formula:

〈Ω|T {O(x, y, z)} |Ω〉 = 〈0|T
{

OI(x, y, z) exp
[

−i
∫

d4w ∆HI(w)
]}

|0〉
〈0|T

{

exp
[

−i
∫

d4w ∆HI(w)
]}

|0〉 , (2)
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where O(x, y, z) is a shorthand for

OI(x, y, z) := φ(x1) . . . φ(xℓ) Ψa1(y1) . . .Ψam(ym) Ψ̄
b1(z1) . . . Ψ̄

bn(zn) . (3)

Note that the quantities on the left-hand side of Eq. (2) refer to the vacuum and the
Heisenberg-picture fields of the full theory, while the quantities on the right-hand side
involve the vacuum of H0 and the interaction-picture fields. Furthermore, the endpoints
of the time integration within the exponentials should formally be viewed as the limits of
w0 → ±∞(1 − iǫ). All these features are identical to the bosonic case, and the derivation
goes through in the same way. The only substantial difference is that the time ordering picks
up an extra minus sign whenever two fermion fields are interchanged.

1.2 Wick’s Theorem

We apply the master formula of Eq. (2) to compute n-point functions by expanding the
expoenentials to a fixed order in the couplings and evaluating the vacuum expectation value
of the resulting products of fields. A useful result for doing so is Wick’s theorem as generalized
to fermions. The result is (for free fields but also applicable to interaction-picture fields)

T{O(x, y, z)} = N{O(x, y, z) + all contractions} . (4)

This is identical to what we had for the scalar theory, although we must still define what we
mean by a contraction. The correct definitions are:

φ(x)φ(x′) = DF (x− x′) (5)

Ψa(x)Ψ̄
b(x′) = [SF (x− x′)]

b

a (6)

Ψ(x)Ψ(x′) = 0 = Ψ̄(x)Ψ̄(x′) (7)

φ(x)Ψ(x′) = 0 = φ(x)Ψ̄(x′) . (8)

These contractions reflect the structure of the 2-point functions in the free theory, and should
not be too surprising. The only thing to remember is to add a minus sign for every time you
anticommute a pair of fermionic fields.

1.3 Feynman Rules

We are now ready to formulate some Feynman rules for computing n-point functions in
perturbation theory. It is obvious from our generalization of Wick’s theorem that the 2-point
functions at leading order are identical to those of the free theory. Beyond this, we must
deduce a vertex factor, and also figure out how to handle multiple fermion lines. As before,
we will begin by assigning a Feynman diagram to each distinct contraction contributing to
the n-point function. Once we’ve seen how this works, we will go in the other direction and
spell out how to compute the contractions using Feynman diagrams alone.
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Figure 1: Feynman diagram for the φΨΨ̄ 3-point function at leading order.

Let us compute the 3-point function φ(x1)Ψa(x2)Ψ̄
b(x3) to leading order in the coupling

y. We have a single, unique contraction:

〈φ1Ψ2 aΨ̄
b
3〉 = 〈0|T{φ1Ψ2 aΨ̄

b
3 (−iy)

∫

d4z φzΨ̄
c
zΨz c}|0〉 (9)

= (−iy)

∫

d4z DF (x1 − z) [SF (x2 − z)] c

a [SF (z − x3)]
b

c . (10)

To do the fermion contractions, I first moved Ψ̄b
3 all the way to the right, giving a factor of

(−1)2, and then connected everything up.

The Feynman diagram that we assign to this result is shown in Fig. 1. The dashed
line denotes the scalar propagator factor DF , and the solid lines correspond to the fermion
propagators SF . We have also assigned arrows to the fermion lines to show the direction
of “index flow”, since [SF ]

b
a is a matrix connecting the index a to the index b. With our

choice of conventions, this matches up conveniently with the flow of fermion number. By
following the lines backwards, we automatically pick up the correct Dirac index structure,
with a connecting to c and c connecting to b. Note as well that the internal index c gets
summed over.

With an eye on scattering, let us take the Fourier transform of this result,

∫

d4x1 e
−ip1·x1

∫

d4x2 e
ip2·x2

∫

d4x3 e
−ip3·x3 〈φ1Ψ2 aΨ̄

b
3〉

= (−iy) (2π)4δ(4)(p2 − p1 − p3)
i

p21 −M2

[

i(\p2 +m)

p22 −m2

i(\p3 +m)

p23 −m2

] b

a

. (11)

You can probably already see how the momentum-space Feynman rules are going to turn out.
As before, we see that the Dirac indices contract by following the fermion lines backwards.
Note that I have also chosen an opposite sign in the exponential for p2 relative to the others.
This choice corresponds to p2 flowing out, while p1 and p3 both flow in. It is convenient
in this case because the momentum flow matches up with the fermion number flow. This
doesn’t always have to be the case.
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Figure 2: Feynman diagram for the connected part of the φφ 2-point function at y2 order.

As a second example, consider the connected y2 corrections to the scalar 2-point function.
We find that these give

〈Ω|T{φ(x1)φ(x2)}|Ω〉

= − (−iy)2
∫

d4z

∫

d4w DF (z − x1)[SF (w − z)] b
a [SF (z − w)] a

b DF (x2 − w) (12)

= − (−iy)2
∫

d4z

∫

d4w DF (z − x1)DF (x2 − w) tr[SF (z − w)SF (w − z)] . (13)

The corresponding Feynman diagram is shown in Fig. 2. We see that the fermion loop gives
a trace over the Dirac indices. This loop also produces a factor of (−1) from the fermion
rearrangements needed to contract them all. Both features always occur for closed fermion
loops. In momentum space, the result is
∫

d4x1 e
−ip1·x1

∫

d4x2 e
ip2·x2 〈φ1φ2〉 (14)

= − (−iy)2
(

i

p21 −M2

)2 ∫
d4q

(2π)4
tr

[

i(\p1 + \q +m)

(p1 + q)2 −m2

i(\q +m)

q2 −m2

]

(2π)4δ(4)(p1 − p2) .

Using the gamma matrix tricks discussed in notes-7, it is straightforward to evaluate the
trace and reduce it to a regular function of q, p1, and m.

Based on these results, we define the (ℓ+m+n)-point function (ℓφ fields, mΨ fields, nΨ̄
fields) in momentum space exactly as before:

(2π)4δ(4)

(

∑

i=ℓ,m,n

pi

)

G̃(ℓ+m+n)({p}) =
(

∏

i=ℓ,m,n

∫

d4xie
−ipi·xi

)

G(ℓ+m+n)({x}) , (15)

where G(ℓ+m+n)({x}) is the corresponding quantity in position space obtained from the
master formula. While we know how to do this, it can be very tedious. Instead, it is
more efficient to calculate G̃({p}) directly using a set of (momentum space) Feynman rules:

1. Draw an external line for each momentum pi with one free end and one fixed end.
Also, for each fermion line corresponding to Ψa(y), assign the Dirac index a to the
external point and draw an arrow on the line directed at the point. Similarly, for each
line corresponding to Ψ̄b(z) include the Dirac index b at the external point and draw
an arrow on the line directed away from the point.
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2. Draw another M dots corresponding to the vertices, and assign a Dirac index c to each
one. Each dot should have one scalar line attached to it, one fermion line directed out
of it, and one fermion line directed into it.

3. Assemble all possible Feynman diagrams by connecting up the free ends of lines in
pairs in all possible ways subject to two rules:

a) Scalar lines can only connect to scalar lines.
b) Fermion lines can only be connected if their arrows point in the same direction.

Also, do not include diagrams that are related by permuting the labels of the vertices.
(The M ! such permutations cancel the 1/M ! from expanding the exponential.)

4. Remove all diagrams containing vacuum bubbles and any diagrams with one or more
unconnected free ends.

5. Assign a value to each diagram:

a) Give a momentum to every line. Each line connected to an external point gets a four
momentum pi directed inwards (away from the point). Having fixed these, constrain
the momenta of all internal lines by imposing four-momentum conservation at every
vertex. In general, this will leave a few internal momenta undertermined. Call them
qj for now.
b) Each scalar line with momentum p gets a propagator factor of i/(p2 − M2 + iǫ).
Each fermion line with the momentum flowing parallel to the fermion number direction
gets a factor of i(\p+m) b

a /(p
2 −m2 + iǫ), where a is the Dirac index at the tip of the

line and b is Dirac index at the tail (as determined by the direction of the arrow on
the line). Also, if the momentum is antiparallel to the fermion number arrow, flip the
sign of the momentum in the propagator p → −p so that the line gets a factor of
i(−\p+m) b

a /(p
2 −m2 + iǫ).

c) Write a factor of −iy for each vertex.
d) Integrate over all undetermined momenta

∫

d4qj/(2π)
4 and sum over all internal

Dirac indices c.
e) For each set of external momenta pi connected to each other in some way, multiply
by an overall factor of (2π)4δ(4) (

∑

pi).
f) Multiply the diagram by the symmetry factor and whatever factors of (-1) that were
incurred by moving fermions around in the contractions. In general, a closed fermion
loop always picks up a net factor of (-1), and any two diagrams that differ by the
exchange of fermion legs have a relative sign between them.

The resulting sum of all the diagrams is the order yM contribution to (2π)4δ(4)(
∑

p) G̃(p).

To illustrate these rules in action, let us compute the two diagrams shown in Fig. 3, that
occur in the y2 contribution to 〈Ψa1(x1)Ψ̄a2(x2)Ψa3(x3)Ψ̄a4(x4)〉. For the first (on the left),
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Figure 3: Feynman diagram for the connected part of the ΨΨ̄ΨΨ̄ 4-point function.

we get

D1 = (−iy)2
i

(p1 + p2)2 −M2
(2π)4δ(4)

(

4
∑

i=1

pi

)

(16)

× i(−\p1 +m) c
a1

p21 −m2

i(\p2 +m) a2
c

p22 −m2

i(−\p3 +m) d
a3

p23 −m2

i(−\p1 +m) a4
d

p24 −m2
,

while for the second diagram (on the right) we find

D2 = (−1)(−iy)2
i

(p1 + p4)2 −M2
(2π)4δ(4)

(

4
∑

i=1

pi

)

(17)

× i(−\p1 +m) c
a1

p21 −m2

i(\p4 +m) a4
c

p24 −m2

i(−\p3 +m) d
a3

p23 −m2

i(−\p2 +m) a2
d

p22 −m2
.

Note the relative minus sign in D2 relative to D1. Again, we see that the general trick to
figuring out the Dirac contraction structure is to simply work backwards along the fermion
lines.

2 Asymptotic States and Scattering

Our next challenge is to convert our Feynman rules for n-point functions into amplitudes for
particle scattering. The procedure for this goes through just like for scalars but with a few
twists. We will not go through the details, but we will present the main results.

2.1 Spectral Decomposition

The spectral decomposition for an interacting Dirac fermion is
∫

d4x e−ip·x〈Ψa(x)Ψ̄
b(0)〉 = iZ(\p+m) b

a

p2 −m2 + iǫ
+

∫ ∞

>m2

ds

2π

W b
a (s)

p2 − s+ iǫ
, (18)
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where the first term comes from our assumption about the existence of a one-particle state
and W b

a is some unspecified function of s in the Dirac space where we dump everything else.
The derivation of this result goes through just like in the scalar case. Note that the location
of the pole p2 = m2 may differ from the mass parameter in the original Lagrangian. The
key thing to take away from this result is that an isolated one-particle state corresponds to
a pole in the complex p0 plane.

2.2 LSZ for Fermions

We will apply this result to produce a LSZ formula for external fermion states. To motivate
the formula, it will be instructive to compute a few expectation values in the free theory.
After working in the free theory for a bit, we will come back to full interacting theory later
on.

Using our definition of states in the free theory, we find the inner product of one-particle
states to be

〈k, s|p, r〉 = (2π)32p0 δrs δ3(~k − ~p) . (19)

We also find the free-theory matrix elements

〈0|Ψc(x)|p, s〉a = uc(p, s)e
−ip·x (20)

〈0|Ψ̄d(x)|p, s〉b = v̄d(p, s)e−ip·x (21)

b〈p, s|Ψc(x)|0〉 = vc(p, s)e
ip·x (22)

a〈p, s|Ψ̄d(x)|0〉 = ūd(p, s)eip·x . (23)

The subscripts on the one-particle states refer to whether they are a-type (particles) or b-type
(antiparticles). All the other possible combinations vanish. A handy way to think about
these matrix elements is that we have contracted the field with the one-particle state.

An immediate implication of these matrix elements is that (in the free theory)

a〈p, r|
[
∫

d4z Ψ̄c(z)Ψc(z)

]

|k, s〉 = (2π)4δ(4)(p− k) ūc(p, r)uc(k, s) . (24)

Let’s compare this to the Fourier transform of 〈Ψ1aΨ̄
b
2

∫

d4zΨ̄c
zΨzc〉:

FT 〈Ψ1aΨ̄
b
2

∫

d4zΨ̄c
zΨzc〉 =

∫

d4x1

(2π)4
eip·x1

∫

d4x2

(2π)4
e−ik·x2〈Ψ1aΨ̄

b
2

∫

d4z Ψ̄c
zΨzc〉 (25)

= (2π)4δ(4)(p− k)
i(\p+m) c

a

p2 −m2 + iǫ

i(\k +m) b
c

k2 −m2 + iǫ
. (26)

These are clearly different. However, suppose we multiply Eq. (26) by (p2−m2+iǫ)ūa(p, r) (k2−
m2 + iǫ)ub(k, s) and sum over the a and b indices. Using

(\p+m) c
a =

∑

r′

ua(p, r
′)ūc(p, r′), and ūa(p, r)ua(p, r

′) = 2mδrr
′

, (27)
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this gives

1

(2m)2
(p2 −m2 + iǫ)ūa(p, r) (k2 −m2 + iǫ)ub(k, s) FT 〈Ψ1aΨ̄

b
2

∫

d4z Ψ̄c
zΨzc〉

= (2π)4δ(4)(p− k) ūc(p, r)uc(k, s) , (28)

which is precisely the result of Eq. (24). In the free theory, at least, we now see how to
connect the time-ordered products of field operators to particle states. If we had wanted
antiparticle states instead of particle states, we would have instead multiplied by va and v̄b

as the projectors. For multiple initial- or final-state particles, we would have used more field
operators and more projectors.

We can now give the LSZ reduction formula for fermions within the interacting theory.
Instead of writing a big formula, it will be easier to state it as a series of operations.
To compute the connected part of the scattering amplitude with ma fermions and mb

antifermions in the initial state (with initial momenta {ki} and spins {si}) and na fermions
and nb antifermions in the final state (with final momenta {pj} and spins {rj}):

1. Compute connected part of the time-ordered vacuum expectation value of (ma+nb) Ψ
fields and (mb+na) Ψ̄ fields using the master formula (or any other method you can
think of).

2. Take the Fourier transform with respect to all the spatial coordinates. Use
∫

d4ki
(2π)4

e−iki·xi

for the incoming momenta and
∫ d4pj

(2π)4
e+ipj ·xj for the outgoing momenta.

3. For each external state, multiply by the appropriate projector:

• −i(k2 −m2)
(

1
2m

√
Z

)

uai(ki, si) for each incoming fermion.

• −i(p2 −m2)
(

1
2m

√
Z

)

ūbj (pj, rj) for each outgoing fermion.

• −i(k2 −m2)
(

1
2m

√
Z

)

v̄bi(k, si) for each incoming antifermion.

• −i(p2 −m2)
(

1
2m

√
Z

)

uaj (pj, rj) for each outgoing fermion.

Here, Z refers to the factor appearing in the one-particle portion of the fermion spectral
formula, Eq. (18). Also, the Dirac indices on the spinors should match those of the
corresponding field and be summed over.

4. Take the limits k2
i → m2 and p2i → m2.

The final result is the matrix element 〈{pj, rj}|{ki, si}〉c in the interacting theory. Aside from

the factors of
√
Z (which are equal to unity at leading order in the perturbative expansion),

these steps match what we did in the free theory. The new non-trivial physics content is
that contributions from well-separated interacting particles in the initial and final states can
still be identified with the poles in the n-point functions of the interacting theory.
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To illustrate this procedure, let us apply it to the matrix element 〈φ(x1)Ψa(x2)Ψ̄
b(x3)〉

we computed previously. Looking at Eq. (11), the signs we used in the Fourier transform
correspond to p1 and p3 incoming and p2 outgoing. Given our LSZ formula and the field
content of the matrix element, this is the correct combination for an incoming scalar (p1)
and fermion (p3), and an outgoing fermion (p2). Applying the projectors, we get (to leading
order)

〈p2|p1p3〉c = (−iy)
1

ZΨ

√

Zφ

(2π)4δ(4)(p2 − p1 − p3) ū
c(p2, r2)uc(p3, s3) . (29)

Note that ZΨ = Zφ = 1 at this order, but we have written them here for posterity. By
changing signs in the Fourier transforms and using different projectors, we could have also
extracted from this matrix element the amplitudes for incoming and outgoing antifermions,
or a fermion-antifermion pair in the initial or final state.

2.3 Feynman Rules for Scattering

While the LSZ formula is important conceptually and gives an algorithm to compute scat-
tering matrix elements, it is much easier to compute them directly with a set of Feynman
rules. These Feynman rules are very similar to those we formulated in momentum space for
n-point functions, but with a different prescription for external legs.

The Feynman rules for our scalar-fermion theory are:

1. Draw all possible connected diagrams at whatever order in the coupling y you are
interested in following the same rules as before. The only difference is in external
fermion legs. For every incoming or outgoing fermion line, the direction of the line
should follow the direction of the momentum flow. However, for every incoming
or outgoing antifermion line, the direction of the line is opposite the direction of
momentum flow. See Fig. 4 for an illustration. We do not distinguish between fermions
and antifermions in internal lines, but the directions of the fermion lines should always
match up.

2. Assign a value to every diagram:
a) For all the internal pieces, everything goes through as before.
b) For the external legs, follow the prescription given in Fig. 4.
c) To get the Dirac index structure right, go backwards along each fermion line and
contract the Dirac indices along the way. All these indices should be contracted in the
final result.
d) Multiply by 1

√
ZΨ for every external fermion and 1/

√

Zφ for every external scalar.
e) Figure out the relative sign of the diagram by looking at the contraction structure.
This turns out to be (-1) for every internal fermion loop and an additional relative sign
for any two diagrams that differ by the exchange of fermion legs.

The result of all this is the scattering amplitude −iM with the fixed incoming momenta and
spins {(ki, si)} and the outgoing momenta and spins {(pj, rj)}.

9



p

(p  − m  )2 2i(p + m)

(p  − m  )2 2i

Incoming Fermion

Incoming Anti−Ferm

Outgoing Fermion

Outgoing Anti−Ferm

Vertex

u(p,s)

v(p,s)

u(p,s)

v(p,s)

ps

s

s

s

p

p

Internal Fermion

p

p

p

p

Incoming Scalar

Outgoing Scalar 

Internal Scalar

1

1

−iy

Figure 4: Feynman rules for the scalar-fermion theory.
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