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So far in the course we have glossed over Lorentz invariance and we have only studied
theories that describe particles with spin equal to zero. In these notes we will tackle Lorentz
and translation invariance head on, and this will lead us to theories with particles of non-
trivial spin. These note are also much more detailed than what we will cover in class, and
they are somewhat of a work in progress. This means that you shouldn’t worry too much
about signs or factors of i that may or may not be missing, but you should let me know of
any typos you might find.

Before addressing Lorentz invariance, we will first discuss the general features of symme-
tries and how to implement them in quantum mechanics. With this in hand, we will focus on
the Poincaré group consisting of Lorentz transformations plus translations and which is the
symmetry group of flat spacetime. In particular, we will study the implications of Poincaré
invariance on the structure of quantum fields and particle states in the Hilbert space.

1 Symmetries, Groups, and Representations

Symmetry transformations obey the mathematical properties of a group, and it is worth
spending a bit of time discussing them.1 A group G is a set of objects together with a
multiplication rule such that:

1. if f , g ∈ G then h = f ·g ∈ G (closure)

2. f ·(g ·h) = (f ·g)·h (associativity)

3. there exists an identity element 1 ∈ G such that 1·f = f·1 = f for any f ∈ G (identity)

4. for every f ∈ G there exists an inverse element f−1 such that f ·f−1 = f−1 ·f = 1
(invertability)

Each group element corresponds to a different transformation of the same class.

A group can be defined via a multiplication table which specifies the value of f·g for every
pair of elements f, g ∈ G. An Abelian group is one for which f ·g = g ·f for every pair of
f, g ∈ G. A familiar example of an Abelian group is the set of rotations in two dimensions.
In contrast, the set of rotations in three dimensions is non-Abelian.

1 Much of this discussion is based on Refs. [1, 2], both of which provide a much more detailed account of
the topics covered here.
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1.1 Representations of Groups

For the most part, we will be interested in symmetry transformations that act linearly on
states in a Hilbert space,

|vi〉 → |v′i〉 = Uij |vj〉. (1)

As a result, we will usually work with matrix representations of groups. Groups themselves
are abstract mathematical objects. A representation of a group is a set of n × n matrices
U(g), one for each group element, such that:

1. U(f)U(g) = U(f ·g)

2. U(1) = I, the identity matrix.

Note that these conditions imply U(f−1) = U−1(f). The value of n is called the dimension of
the representation. For any group, there is always the trivial representation where U(g) = I

for every f ∈ G. Note that a representation does not have to faithfully reproduce the full
multiplication table. A representation is said to be unitary if all the representation matrices
can be taken to be unitary (U † = U−1).

e.g. 1. Rotations in two dimensions
This group is formally called SO(2) and can be defined as an abstract mathematical
object. Any group element can be associated with a rotation angle θ. The most familiar
representation is in terms of 2× 2 matrices,

D(θ) =

(

cos θ sin θ
− sin θ cos θ

)

. (2)

Of course, there is also the trivial representation.

Our focus will be primarily on continuous transformations. These correspond to what
are called Lie groups, which are simply groups whose elements can be parametrized in terms
of a set of continuous variables {αa}. We can (and will) always choose these coordinates
(near the identity) such that the point αa = 0 corresponds to the identity element of the
group. Thus, for any representation of the group, we have for infinitesimal transformations
near the identity

U(δαa) = I+ iδαata +O(δα2). (3)

The matrices ta are called generators of the representation. Finite transformations can be
built up from infinitesimal ones according to

U(αa) = lim
p→∞

(1 + iαata/p)p = eiα
ata . (4)

This is nice because it implies that we only need to sort out a finite set of generators
when discussing the representation of a Lie group rather than the infinite number of group
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elements. Let us also mention that a Lie group is said to be compact iff all the parameters
αa run over finite intervals.

A set of generator matrices {ta} can represent a Lie group provided they satisfy a Lie
algebra. Besides being able to add and multiply them, they must also satisfy the following
conditions:

1. [ta, tb] = ifabctc for some constants fabc

2. [ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0 (Jacobi Identity)

The first condition is needed for the closure of the group (i.e. exp(iαata) exp(iβata) =
exp(iλata) for some λa) while the second is required for associativity. In fact, we can define a
Lie group abstractly by specifying the structure constants fabc. Most of the representations
we’ll work with are unitary, in which case the structure constants are all real and the
generators ta are Hermitian.

e.g. 2 SU(2)

This is the prototypical Lie group, and it should already be familiar from what you know
about spin in quantum mechanics. As a group, it is defined to be the set of 2× 2 unitary
matrices with determinant equal to one. The corresponding Lie algebra has three basis
elements which satisfy

[ta, tb] = iǫabctc (5)

The basic fundamental representation of SU(2) is in terms of Pauli matrices: ta = σa/2.
Since [σa, σb] = 2iǫabcσc, it’s clear that this is a valid representation of the algebra. You
might also recall that any SU(2) matrix can be written in the form U = exp(iαaσa/2).

Even though SU(2) is a group defined in terms of 2× 2 matrices, it has other
representations. You may recall from basic quantum mechanics that spin corresponds to a
symmetry under SU(2). The fundamental rep corresponds to s = 1/2, and s = 0 is just the
trivial representation (U(g) = I). On the other hand, we also know that there are spins
with s = 0, 1/2, 1, 3/2, . . ., and these correspond to represenations of dimension (2s+ 1).

1.2 More on Representations (optional)

The nice thing about working with linear generators ta is that we can choose a nice basis
for them. This is equivalent to choosing a nice set of coordinates for the Lie group. In
particular, it is always possible to choose the generators tar of any representation r such that

tr(tart
b
r) = T2(r)δ

ab. (6)

The constant T2(r) is called the Dynkin index of the representation. With the exception
of the Poincaré group (Lorentz and translations), we will always implictly work in bases
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satisfying Eq. (6), and we will concentrate on the case where the index is strictly positive.
If so, the corresponding Lie group is said to be compact and is guaranteed to have finite-
dimensional unitary representations. This is not true of the Poincaré group, which is
not compact.

It turns out that there are only a finite set of classes of compact Lie groups. The classical
groups are:

• U(1) = phase transformations, U = eiα

• SU(N) = set of N ×N unitary matrices with det(U) = 1

• SO(N) = set of orthogonal N ×N matrices with det(U) = 1

• Sp(2N) = set of 2N × 2N matrices that preserve a slightly funny inner product.

In addition to these, there are the exceptional Lie groups: E6, E7, E8, F4, G2. In studying
the Standard Model, we will focus primarily on U(1) and SU(N) groups.

Some useful and fun facts about compact Lie algebras:

• Except for U(1), we have tr(ta) = 0 for all the classical and exceptional Lie groups.

• Number of generators = d(G)

d(G) =







N2 − 1; SU(N)
N(N − 1)/2; SO(N)
2N(2N + 1)/2; Sp(2N)

(7)

• A representation (= rep) is irreducible if it cannot be decomposed into a set of smaller
reps. This is true if and only if it is impossible to simultaneously block-diagonalize all
the generators of the rep. Irreducible representation = irrep.

• If one of the generators commutes with all the others, it generates a U(1) subgroup
called an Abelian factor: G = G′ × U(1).

• If the algebra cannot be split into sets of mutually commuting generators it is said to
be simple. For example, SU(5) is simple (as are all the classical and exceptional Lie
groups given above) while SU(3)× SU(2)× U(1) is not simple. In the latter case, all
the SU(3) generators commute with all the SU(2) generators and so on.

• A group is semi-simple if it does not have any Abelian factors.

• With the basis choice yielding Eq. (6), one can show that the structure constants are
completely anti-symmetric.
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• The fundamental representation of SU(N) is the set of N×N special unitary matrices
acting on a complex vector space. This is often called the N representation. Similarly,
the fundamental representation of SO(N) is the set of N × N special orthogonal
matrices acting on a real vector space.

• The adjoint (= A) representation can be defined in terms of the structure constants
according to

(taA)bc = −ifabc (8)

Note that on the left side, a labels the adjoint generator while b and c label its matrix
indices.

• Given any rep tar , the conjugate matrices −(tar)
∗ give another representation, unsur-

prisingly called the conjugate representation. A rep is said to be real if it unitarily
equivalent to its conjugate. The adjoint rep is always real.

• The Casimir operator of a rep is defined by T 2
r = tart

a
r (with an implicit sum on a). One

can show that T 2
r commutes with all the tar . For an irrep (=irreducible representation)

of a simple group, this implies that

T 2
r = C2(r)I, (9)

for some positive constant C2(r).

• It is conventional to fix the normalization of the fundamental of SU(N) such that
T2(N) = 1/2. Once this is done, it fixes the normalization of all the other irreps. In
particular, it implies that for SU(N), C2(N) = (N2 − 1)/2N , T2(A) = N = C2(A).

2 Symmetries in Physical Systems

We have already discussed what it means for a transformation to be a symmetry of a classical
system. Having discussed group representations, we can now apply this knowledge to choose
convenient sets of variables for both classical and quantum systems.

2.1 Symmetries in Classical Mechanics

Recall that for a continuous classical system, the condition for the transformation

φi → φ′
i = fi(φ) (10)

to be a symmetry was

S[φ] → S[φ′] := S ′[φ] = S[φ] . (11)
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This usually implies that the Lagrangian should be unchanged by the transformation as well.
Note as well that this is the active picture, and there is a similar relation for the passive
picture.

In most cases of interest, we are interested in symmetry transformations that act linearly
on the field variables. In this case, given a system described by n fields {φ1, φ2, . . . , φn}, we
have for each element g of the symmetry group

φA(x) → φ′
A(x) =M B

A (g)φB(x) . (12)

The matrices M B
A (g) form a representation of the symmetry group, in the sense described

above, and there is a matrix for each element of the symmetry group. Note that these
matrices M(g) must be invertible, be they do not have to be unitary. For the Lagrangian to
be invariant under the symmetry, it should be built up from terms that are also invariant.
This strongly limits what can appear in the Lagrangian.

e.g. 3. A theory with SU(2) symmetry.

Consider the theory of two of complex fields φ1 and φ2 combined to form a single
two-component field Φ given by

Φ =

(

φ1

φ2

)

. (13)

We will take the Lagrangian for the theory to be

L = (∂µΦ†)(∂µΦ)−m2Φ†Φ−
λ

4
(Φ†Φ)2 (14)

This theory is invariant under SU(2) transformations

Φ(x) → Φ′(x) = eiα
ataΦ , (15)

where ta = σa/2 are the Pauli matrices. In this case, M(αa) = eiα
aσa/2. This is only one of

many different theories with a symmetry under SU(2) transformations. For instance, we
could have also constructed a theory using the triplet representation of SU(2) where the ta

matrices are proportional to the matrices that arise when you construct the spin operators
Sx, Sy, and Sz on states of spin s = 1. (Note that the SU(2) in this example has nothing to
with spin!)

2.2 Symmetries in Quantum Mechanics

In quantum mechanics we have states in a Hilbert space and operators that act upon them.
Observables correspond to the eigenvalues of Hermitian operators, and the squared norms
of states are interpreted as probabilities. In general, a transformation upon a quantum
mechanical system can be implemented by an operator acting on all states:

|ψ〉 → |ψ′〉 = U |ψ〉 , (16)
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for some operator U . By construction, this operator is linear.

The transformations that tend to be the most interesting are symmetries. We already
discussed what it means for a transformation to be a symmetry of a classical system. In
quantum mechanics, we demand that a symmetry (not) do two things. The first is that it
should not alter the inner products of states (which are interpreted as probabilities),

〈ψa|ψb〉 = 〈ψ′
a|ψ

′
b〉 (17)

= 〈ψa|U
†U |ψb〉 , (18)

which implies that we need U †U = I. Thus, the transformation should be implemented
by a unitary operator.2 We would also like the transformation to be consistent with time
evolution. In the Schrödinger picture, this means specifically that

|ψ′(t)〉 = e−iH(t−t0)|ψ′(t0)〉 (19)

Ue−iH(t−t0)|ψ(t0)〉 = e−iH(t−t0)U |ψ(t0)〉 , (20)

which implies that3

[H,U ] = 0 , (21)

Together, Eqs (18,21) are the conditions that a set of transformations must satisfy to be a
symmetry in quantum mechanics.

In general, the set of all symmetry transformations on the system forms a group. For
each element g in the group, there is an operator U(g) that acts linearly on the vector space
of states. Therefore they must be a linear representation of the group. It is often useful
to choose a basis of states that transform as independent blocks under the symmetry. For
example, with spin we decompose the Hilbert space into states with different spins.

If we apply this definition to a continuous symmetry, we immediately get a quantum
version of Noether’s theorem. A continuous symmetry corresponds to a Lie group, and thus
we can write any group element in terms of the generators of the Lie algebra as

U(αa) = eiα
ata , (22)

where αa are the continuous parameters that label the different elements of the group and
now ta is a quantum operator that represents the Lie algebra of the group ( [ta, tb] = ifabctc ).
By assumption, U(αa) commutes with the Hamiltonian for any value of αa. This implies
that

[H, ta] = 0 . (23)

In the Heisenberg picture, this implies that the generators are conserved in that they do not
evolve in time.

2 Actually, this is a bit too strict since equality of the inner products up to a phase would have been fine
as well. However, we will concentrate on unitary transformations in this course.

3This assumes that U has no explicit time dependence. If it does, the condition is −i∂tU + [H,U ] = 0.
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Just like we had the Schrödinger and Heisenberg pictures of time evolution in quantum
mechanics, or the active and passive pictures of symmetries in classical mechanics, we can
also think of symmetries as acting on operators rather than on states. It turns out that
this is usually the more convenient thing to do in quantum field theories. In this picture, a
symmetry transformation corresponds to keeping all the states the same but transforming
the operators according to

O → O′ = U †(g)OU(g) , (24)

where U(g) is unitary with [H,U(g)] = 0 as before. For continuous symmetries parametrized
by αa, we can take an infinitesimal transformation by δαa and define

O′ −O = δαa (∆O)a (25)

Expanding U(αa) and matching up δαa factors, we find

(∆O)a = −i[ta,O] . (26)

This implies that the action of the transformation on the operator is encoded in its commu-
tator with the generators (analagous to the commutator with H giving the time evolution).

In quantum field theories, we will usually be interested in symmetries that act linearly
on the fields. By this, we mean that for a system of n fields {φ1, . . . , φn} we have

φA(x) → φ′
A(x) = U †(g)φA(x)U(g) =M B

A (g)φj(x) , (27)

where the matricesM form a representation of the symmetry group.4 Note that we have three
levels of mathematical structure here. The first is the abstract structure of the symmetry
group itself, which need not refer to any matrices at all. The second level is the representation
of the group on the states of the Hilbert space by the unitary operators U . And the third
level is the representation of the group by the M matrices acting on the space fields. These
matrices do not have to be unitary.

It is worth checking that this picture is consistent. We have trivially that U(1) = I and
M B

A (1) = δ B
A , and associativity and invertability follow by assumption. The last thing to

check is closure. Suppose we transform by the group element f ·g. This gives on the left-hand
side of Eq. (27)

U †(f · g)φA(x)U(f · g) = U †(g)U †(f)φA(x)U(f)U(g) (28)

= U †(g)
[

M B
A (f)φB(x)

]

U(g) (29)

= M B
A (f)M C

B (g)φC(x) . (30)

On the right-hand side, we find

M C
A (f · g)φC(x) =M B

A (f)M C
B (g)φC(x) . (31)

Thus, everthing works out as it should.

4 If the transformation shifts x as well, we should also include it here: φ′(x′) = U †φ(x)U = Mφ(x′).
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3 The Poincaré Group: Lorentz plus Translations

The symmetries we are most interested in for relativistic theories are those of spacetime,
namely translations and Lorentz transformations (boosts and rotations). Together, this
group of symmetries is called the Poincaré group. When we get to finding representations of
the Poincaré group on fields, we will see that they correspond to particles of different spins.

3.1 The Translation Group

The Poincaré group consists of translations plus Lorentz transformations. We have already
discussed translations,

xµ → xµ + aµ . (32)

Translations form a group that can be parametrized by the four components of the translation
vector aµ. We can represent the group on the space of functions of x by the linear operator

U(a) = eia
ν(−i∂ν) , (33)

that produces

U(a)f(x) =

[

1 + aν∂ν +
1

2!
(aν∂ν)

2 + . . .

]

f(x) = f(x+ a) . (34)

Specializing to infinitesimal translations, we find the generators of this representation to be

Pµ = −i∂µ . (35)

These satisfy the Lie algebra

[P µ, P ν] = 0 . (36)

The group of translations is formally defined as the abstract Lie group spanned by the
parameters aµ ∈ (−∞,∞) with Eq. (36) as the Lie algebra. Our labelling of the generators
by P µ reflects our result that the conserved currents corresponding to invariance under
translations are the energy and momentum operators.

3.2 The Lorentz Group

The second component of the Poincaré group are Lorentz transformations. These are defined
as the set of linear transformations of spacetime that leave the Lorentz interval unchanged.
Specifically, a Lorentz transformation is any real linear transformation Λ such that

xµ → x
′µ = Λµ

νx
ν , (37)
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with

ηµνdx
′µdx

′ν = ηµνdx
µdxν . (38)

This implies that the transformation matrices must satisfy

ηµν = ηαβΛ
α
µΛ

β
ν , (39)

which is equivalent to the condition

(Λ−1)µν = Λ µ
ν := ηνβ η

µα Λβ
α . (40)

Besides just xµ, we call any four-component object vµ transforming this way under
Lorentz a four vector :

vµ → v
′µ = Λµ

νv
ν . (41)

The result of Eq. (40) implies that the dot product of any pair of four vectors vµ and wµ is
unchanged by Lorentz transformations,

v · w := ηµνv
µwν = v′ · w′ . (42)

More generally, we define an (n, 0)-index Lorentz tensor to be an object T µ1µ2...µn that
transforms as

T µ1...µn → T
′µ1...µn = Λµ1

ν1
. . .Λµn

νnT
ν1...νn . (43)

From this point of view, a vector is just a (1, 0) tensor. We also define tensors with lowered
indices by starting with a (n, 0) tensor and lowering some of the indices with ηµν . We call
a tensor with n upper indices and m lower indices a (n,m) tensor. It is straightforward to
show that any product of tensors with all the indices contracted is Lorentz-invariant. More
generally, any quantity defined on spacetime can be decomposed into Lorentz tensors as far
as its Lorentz transformation properties are concerned.

Let us turn next to the Lie group strucuture of Lorentz transformations. The identity
element of the group is clearly Λµ

ν = δµν . Expanding around the identity, we have

Λµ
ν = δµν + δωµ

ν . (44)

If we plug this into the requirement of Eq. (38), we find that δωµ
ν is completely general

provided it is antisymmetric:

δωµν = −δωνµ . (45)

With this constraint, δωµ
ν has six independent elements that we can identify with the three

generators of spatial rotations and the three generators of Lorentz boosts.

Consider a unitary representation of the Lorentz group on a Hilbert space. For an
infinitesimal transformation parameterized by δωµν , we have

U(1 + δω) = I+
i

2
δωµνJ

µν + . . . , (46)
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where Jµν are a set of six antisymmetric Hermitian operators that generate the group
representation. As an operator, consistency of the representation implies that Jµν transforms
as a (2, 0) tensor,

U †(Λ)JµνU(Λ) = Λµ
ρΛ

ν
σJ

ρσ . (47)

Expanding this result out when Λ is also infinitesimal then gives the commutation relations
of the Jµν generators:

[Jµν , Jρσ] = −i (ηµρJνσ − ηνρJµσ − ηµσJνρ + ηνσJνρ) . (48)

These relations define the Lie algebra of the Lorentz group.

The six independent Jµν generators can be rewritten in terms of the more familiar
generators of rotations and boosts. Let us define

J i = ǫijkJ jk , Ki = J i0 . (49)

The commutation relations of Eq. (48) then imply

[J i, J j] = iǫijkJk , (50)

[Ki, Kj] = −iǫijkJk , (51)

[J i, Kj] = iǫijkKk . (52)

The first should be familiar, while the second and third are the generalizations to boosts.

With the Lie algebra of Lorentz in hand, we can try to find representations of it. In fact,
we already have one, namely the Lorentz group as a set of linear operators acting on the
space of four vectors. It is not hard to check that the generators for this representation are

(Jµν
4 )αβ = −i(δµαδ

ν
β − δµβδ

ν
α) . (53)

Note that here the µ and ν indices label which generator we want, and α and β label the
elements of the representation matrix. Explicitly, we have

Λα
β = δαβ +

i

2
δωµν(J

µν
4 )αβ + . . . (54)

= δαβ + δωα
β , (55)

just like Eq. (44). A second simple representation is the Lorentz group acting on the space
of functions of x. For this rep, the generators are

Jµν
x = i(xµ∂ν − xν∂µ) . (56)

These generalize the angular momentum operators ~J = ~x × (−i~∇) that you have seen in
position-space quantum mechanics.

There’s a low-down dirty trick to find the general representations of the Lorentz group.
Let us define new operators Ai and Bi by

Ai =
1

2
(J i − iKi) , Bi =

1

2
(J i + iKi) . (57)
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These operators have the commutation relations

[Ai, Aj] = iǫijkAk (58)

[Bi, Bj] = iǫijkBk (59)

[Ai, Bj] = 0 . (60)

Note as well that (Ai)† = Bi and so on. These factors each have the commutation relations
of two independent SU(2) Lie algebras, and we already know how to build them up. The
irreducible representations can be labelled by a pair of half-integers (jA, jB), and they have
dimension (2jA + 1)× (2jB + 1).

The lowest representation is just (0, 0) corresponding to the trivial representation of
Lorentz. The next two up are (1/2, 0) and (0, 1/2), both of dimension two. We will see that
these correspond to left- and right-handed Weyl fermions. Under the rotation subgroup
of Lorentz, these both unsurprisingly have spin j = 1/2. The next representation up
is (1/2, 1/2), which has a dimension of four. It corresponds to a Lorentz vector, and it
decomposes into spins j = 0, 1 under the rotation subgroup. Going to higher values of jA
and jB gives even higher spins.

In what we have done so far, we have implicitly assumed that the elements of the Lorentz
group can be continuously deformed to the identity. This isn’t necessarily true. Two matrices
that satisfy the condition of Eq. (39) that cannot be deformed smoothly to unity are

P = diag(+1,−1,−1,−1) , (61)

and

T = diag(−1,+1,+1,+1) . (62)

The matrix P is called a parity transformation and T is called time reversal. It turns out that
any Lorentz transformation can be written as the product of a transformation connected to
the identity times either P, T , or PT . In this sense, the Lorentz group has four independent
sectors. We will be interested mainly in the sector connected to the identity, called the proper
orthochronous subgroup of Lorentz, which is often what is meant by “Lorentz group”, and
from here on we will follow this convention. In Nature, it turns out that “Lorentz” is a good
symmetry but parity is not.

Applying P to the generators, we find that J i → J i and Ki → −Ki. Correspondingly,
we find Ai ↔ Bi. Thus, the effect of parity is to map (jA, jB) ↔ (jB, jA). The Weyl spinor
irreps of Lorentz are therefore not representations of the Lorentz group extended by parity.
On the other hand, the reducible representation (1/2, 0) ⊕ (0, 1/2) does work. We will use
this rep soon to describe electrons in QED.

3.3 The Poincaré Group

The full Poincaré group consists of translations and Lorentz, and the general form of such a
transformation is

xµ → Λµ
νx

ν + aµ . (63)

12



Thus, we will label general Poincaré group elements by

{Λ, a} . (64)

We would like to find representations of this larger group. For this, we need to figure out
the Lie algebra.

Since we already have the Lie algebras for the translation and Lorentz subgroups, the
only other things we need are the commutation relations between P µ and Jρσ (provided they
don’t induce any new operators). Following the same steps as above, the result is

[P µ, Jρσ] = i (ηµρP σ − ηµσP ρ) (65)

[P µ, P ν ] = 0 (66)

[Jµν , Jρσ] = −i (ηµρJνσ − ηνρJµσ − ηµσJνρ + ηνσJνρ) , (67)

where we have rewritten the other commutation relations for posterity. Together, these
relations completely fix the Lie algebra structure of the Poincaré group.

Looking at Eq. (65), it would appear that some of the Jµν currents are not conserved, in
that [P 0, Jµν ] 6= 0 (recall that P 0 = H). Working out the details, the non-zero components
correspond to the boosts,

[H, J0i] = iP i . (68)

This contradicts Eq. (21), one of our conditions for an operator to be the generator of a
symmetry. It turns out that Eq. (21) does not quite apply to the case where the operator
has an explicit dependence on t (i.e. t appears in the operator on its own, and not as the
argument of a field). The correct generalization is

0 = i[H,U ] +
∂U

∂t
=
dU

dt
. (69)

Working out the Noether current for Jµν in a general Lorentz-invariant field theory, one
finds that the J0i components depend on t explicitly and satisfy the general condition of
Eq. (69) [4].

3.4 Representations of Poincaré on Fields

To construct a Poincaré-invariant quantum field theory, it is convenient to use field co-
ordinates that have well-defined transformation properties under the Poincaré group. This
corresponds to using fields that transform under representations of the Poincaré group. Note
that these representations do not have to be unitary.

We have already encountered the most simple representation of the Poincaré group on a
quantum field operator. It is the scalar field, which we found to correspond to particles of
spin s = 0. In the classical theory, we have

x → x′ = Λ x+ a , (70)

φ(x) → φ′(x′) = φ(x) = φ(Λ−1x′ − a) . (71)
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Put another way, φ(x) is invariant under Poincaré transformations in the sense that the
shifted field is the same function of the rotated coordinates as the original field on the
original coordinates. For example, if φ(x) is zero everywhere except at x = x0, φ

′(x) will be
zero everywhere except at x′0 = Λx0 + a with φ′(Λx0 + a) = φ(x0). In the quantum theory,
the Poincaré transformation law for the scalar field operator is

φ′(x′) = U †(Λ, a)φ(x)U(Λ, a) = φ(Λ−1x− a) , (72)

where U(Λ, a) is the unitary operator implementing the transformation on the Hilbert space.
Note that relative to Eq. (27), we have also accounted for the change in the x coordinate.

A second obvious representation is the Lorentz vector field Aµ. Here, we have

U †(Λ, a)Aµ(x)U(Λ, a) = Λµ
νA

ν(Λ−1x− a) (73)

We see that the field components are rotated in addition to the shift in the coordinate
dependence. They clearly transform in the vector representation of Lorentz.

In general, the representation of the translation part of the Poincaré group is obtained by
simply writing the quantum field as a functionof spacetime. This gives an infinite-dimensional
coordinate representation of the group with the operator P µ = −i∂µ defined on the vector
space of functions of spacetime.

The representation of the Lorentz subgroup takes a more complicated form. To see how
this works, let us expand the left- and right-hand sides of Eq. (73) for Λ = 1+δω and aµ = 0.
On the left side we get

U †(1 + δω)Aµ(x)U(1 + δω) = Aµ(x)−
i

2
δωαβ[J

αβ , Aµ(x)] , (74)

where Jµν is the Lorentz generator operator on the Hilbert space. On the right-hand side,
we find

Λµ
νA

ν(Λ−1x) = Aµ(x) +
i

2
δωαβ

[

−i(xα∂β − xβ∂α)A
µ(x)− i(δµαηνβ − δµβδ

να)Aν(x)
]

. (75)

Comparing both sides, we see that

[Jαβ , Aµ(x)] = Jαβ
x Aµ(x)− (Jαβ

4 )µνA
ν(x) . (76)

The left side just says that this is the variation of the Aµ(x) operator under infinitesimal
Lorentz transformations. On the right side, there are two contributions. The first term is
the variation due to the shift in the spacetime coordinate x, corresponding to a coordinate
representation. The second term is due to the vector transformation of the field components.
Specializing to the ij components, this is just the expression for the infinitesimal change in
the vector field under spatial rotations. In this case, the first term corresponds to the orbital
angular momentum carried by the field while the second is due to the intrinsic “spin” of the
field. Note that there is no spin contribution for µ = 0.

Given the result for the vector field, the generalization to an arbitrary representation of
the Lorentz subgroup acting on the fields {φC} should not be too suprising. It is

[Jαβ , φC(x)] = Jαβ
x φC(x)− (Jαβ

AB)
D
C φD(x) , (77)
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where Jαβ
AB is the generator of the (jA, jB) representation of the Lorentz Lie algebra discussed

in Section 3.2. Since φC(x) is defined on spacetime, it also furnishes a representation of the
translation group. The finite form of a Poincaré transformation is

U †(Λ, a)φC(x)U(Λ, a) =

[

exp(
i

2
ωαβJ

αβ
AB)

] D

C

φD(Λ
−1x− a) . (78)

3.5 Representations of Poincaré on States

Finding the representations of the Poincaré group on one-particle quantum states is slightly
more challenging. The difficulty lies in the fact that we are only allowed to use unitary
representations. This has a very important consequence: physical particle states with mass
m > 0 can be characterized completely by their mass and their representation under the
SU(2) spin group. In contrast, massless particles states can be characterized by their repre-
sentation under a slightly different group, called helicity. For more details, see Refs. [5, 6, 7].

The translation part of the Poincaré group is trivial to include if we work with simulta-
neous eigenstates of P µ:

P µ|p, σ〉 = pµ|p, σ〉 , (79)

where the σ index labels any other properties the state could have under Lorentz. Applying
a Lorentz transformation to such a state, we must have

U(Λ)|p, σ〉 = [D(Λ)]σσ′ |Λp, σ′〉 . (80)

Our remaining task is to figure out what the Dσσ′ matrices can be.

Since we are using momentum eigenstates, these states are also eigenstates of the P 2

operator. This operator is invariant under both translations and Lorentz, which can be
verified by checking that it commutes with all the Poincaré generators P µ and Jµν . Thus,
for a set of states transforming under a given representation of Poincaré, they must all have
the same eigenvalue of P 2. For this reason, P 2 is called a Casimir invariant of the group
and its eigenvalues are usually labelled by P 2 = M2. If we also use the fact that (proper
orthochronous) Poincaré transformations do not change the sign of p0, we can subdivide the
possible representations into nine subclasses according to whether M2 and p0 are positive,
negative, or zero. The cases of physical relevance are M2 = 0 = p0, M2 > 0 and p0 > 0,
and M2 = 0 and p0 > 0. The first of these corresponds to the vacuum |Ω〉 which transforms
under the trivial representation. The second and third correspond to massive and massless
particles.

For a massive particle with mass M , let us define a reference momentum

kµ = (M,~0) , (81)

corresponding to the rest frame. We can get to any other momentum p (with p2 = M2) in
a unique way by applying the Lorentz transformation Lp. On states, this implies that

|p, σ〉 = U(Lp)|k, σ〉 . (82)
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Note that we equal σ indices on both sides of the equation. This corresponds to a specific
choice for how to relate the index of the reference state to the index of the more general
state.

For arbitrary transformations, the transformed state will have a modified index structure
as in Eq. (80). Performing another Lorentz transformation Λ, we get (leaving out the σ stuff
for now)

U(Λ)|p〉 = U(Λ)U(Lp)|k〉 (83)

= U(LΛp)U
†(LΛp)U(Λ)U(Lp)|k〉 (84)

= U(LΛp)U(L
−1
ΛpΛLp)|k〉 . (85)

This simple rearrangement has an important physical implication. The argument of the
second U operator in the last line is a Lorentz transformation that takes k → p → p′ → k.
It is therefore an element of the little group of Lorentz, the subgroup of Lorentz that maps
kµ to itself. To figure out the effect of the transformation on the σ indices, it is therefore
sufficient to find the representations of the little group alone.

Given the form of the reference momentum in Eq. (81), the little group in the massive
case is just the spatial rotation subgroup of Lorentz, corresponding to the familiar Lie algebra
of SU(2). Therefore the σ label is just a spin index! The unitary one-particle representations
of a massive particle are therefore labelled by the particle’s four momentum and its spin.
This might not seem too surprising, but here we have found it to be a consequence of the
underlying Poincaré symmetry. In terms of the quantum states, we have

U(Λ)|p, σ〉 = U(LΛp) ([D(Λ)]σσ′ |k, σ′〉) (86)

= [D(Λ)]σσ′ |Λp, σ′〉 , (87)

where we now know that D(Λ) is a (2s+1)× (2s+1) representation of SU(2) corresponding
to the spin s of the particle.

The spin of a representation can be related to a second Casimir operator. Let us define
the Pauli-Lubanski pseudovector by

Wµ = −
1

2
ǫµνρσJ

νρP σ , (88)

where ǫµνρσ is the totally antisymmetric tensor with ǫ0123 = +1. Since WµP
µ = 0, in the

particle rest frame we have W µ = (0, ~W ) with

W i = −M J i . (89)

The quantity W 2 = WµW
µ is therefore Lorentz invariant and equal to

W 2 = −M2 ~J · ~J → −M2s(s+ 1) . (90)

With a bit of work, you can show that W 2 also commutes with all the Poincaré generators.
Thus, it is a Casimir invariant of the group and is equal to a fixed number in any represen-
tation. In all, we can completely charaterize any massive representation of Poincaré by the
mass M and total spin s.
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These arguments go through in the same way in the massless case with one important
difference; a massless particle has no rest frame. Instead, a reasonable choice for the reference
momentum is

kµ = (k, 0, 0, k) . (91)

The little group is no longer the rotation group. Instead, it is generated by J3, L1 = K1−J2,
and L2 = K2 + J1, which have the Lie algebra of a different group called ISO(2). It turns
out that the only finite-dimensional representation of this group has W 2 = 0 along with
P 2 = 0. This implies that

W µ|~k〉 = hP µ|~k〉 (92)

on any such massless state. The proportionality constant is called the helicity of the particle,
and is equal to

h =
~J · ~p

|~p|
=W 0/|~p| . (93)

This single number characterizes the finite representation of the little group, and must either
be integer or half-interger. It turns out that the consistency of a theory requires that
it contain states with both positive and negative helicity. These two helicity eigenstates
correspond to “spin” parallel (h > 0) and antiparallel (h < 0) to the direction of motion.
This result has important implications for the photon. First, it agrees with the fact that the
photon only has two independent polarizations. Second, we will see that the one-particle
state of the photon will be created by a vector field Aµ with four components, only two of
which can correspond to physical excitations. Getting rid of the extra degrees of freedom
will turn out to be highly non-trivial and will lead into gauge invariance.

4 Executive Summary

Here’s the short version of all this:

• Symmetry transformations have the mathematical structure of a group.

• A representation of a group is a set of linear operators M(g) (which can be written as
matrices once we specify a basis) that obey the group multiplication rules: M(1) = I

and M(f · g) = M(f)M(g). Even though the representation is properly the set of
linear operators, sometimes the vector space upon which they act is also called “the
representation” of the group.

• A Lie group is one that can be parametrized by continuous coordinates {αa}. For
group elements connected to the identity, we have U(αa) = exp(iαata). To represent
such elements, we only need to find a representation of the Lie algebra for ta.
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• In quantum mechanics, symmetries are implemented by unitary operators U(g) acting
on states with [H,U ] = 0. Equivalently, we can transform the operators instead of the
states according to O = U †(g)OU(g). For Lie groups, this implies that ∂tt

a = 0 is
conserved and [ta,O] = i(∆O)a.

• Poincaré = translations plus Lorentz. The corresponding Lie algebra is

[P µ, Jρσ] = i (ηµρP σ − ηµσP ρ) (94)

[P µ, P ν ] = 0 (95)

[Jµν , Jρσ] = −i (ηµρJνσ − ηνρJµσ − ηµσJνρ + ηνσJνρ) , (96)

Translations are easy to represent using functions of spacetime. For Lorentz, we can
rewrite the generators as a pair of SU(2) factors, and the representations are labelled
by (jA, jB) with jA,B = 0, 1/2, 1, 3/2, . . ..

• We will use quantum fields that transform under definite representations of Poincaré.
This means that as a quantum operator

U †(Λ, a)φA(x)U(Λ, a) =M B
A (Λ)φB(Λ

−1x− a) , (97)

where the matrices M B
A (Λ) form a (possibly non-unitary) representation of Lorentz.

• Representations of Poincaré in terms of the U operators acting on states is more
complicated because they have to be unitary. Any representation can be characterized
by the values of the Casimir operators P 2 andW 2 that commute with all the generators.
It turns out that for momentum eigenstates, we only need to find representations of the
much simpler little group. For massive states, P 2 =M2 > 0, the little group is SU(2)
and they can be labelled by their momentum and their spin. For massless states, we
have a slightly different little group ISO(2) and the states are labelled by momentum
and helicity.
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