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We now have a perturbative prescription to compute the vacuum matrix elements of time-
ordered products of fields. It’s nice to be able to compute something, even approximately,
but what we would really like is to be able to predict are physically observable quantities. In
this note we will show how to relate time-ordered matrix elements to quantum amplitudes
for particle scattering.

1 Asymptotic States

Our first goal is to connect n-point functions to incoming and outgoing particles travelling
from and to spacetime infinity. For this, we will use two primary results: the Källén-Symanzik
spectral decomposition, and the Lehmann-Symanzik-Zimmermann formula.

1.1 Spectral Decomposition

To begin, let us think about the effect of translations and Lorentz transformations on the
scalar fields in the interacting theory (with some unspecified ∆V (φ)). Just like in the free
theory, spacetime translations are symmetries of the theory and there are corresponding
conserved 4-momentum operators P µ = (H, ~P ). In particular, we have

φ(x) = eiP ·xφ(0)e−iP ·x . (1)

Since spacetime translations commute and the operators are Hermitian, there exists a basis
of P µ eigenstates that spans the Hilbert space.

We have already made a couple of assumptions about the structure of these states. The
first is that there is a vacuum state |Ω〉 such that

P µ|Ω〉 = 0 . (2)

The second assumption is that the next set of states up in energy are isolated one-particle
states |~p〉 with

P µ|~p〉 = pµ|~p〉 , (3)

with p0 =
√

~p2 +M2 for some constantM2 > 0. More precisely, we assume there is a unique
one-particle state with this value of M for every possible value of the 3-momentum ~p. We
will normalize these states in the same way as the momentum states of the free theory,

〈~p|~k〉 = (2π)32p0δ(3)(~p− ~k) . (4)
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For the remaining 4-momentum eigenstates |ψ′
~p〉 above the one-particle states, we make

no further assumptions aside from a mass gap. By this, we mean that

P µ|ψ′
~p〉 = pµψ′ |ψ′

~p〉 (5)

with p0ψ = Eψ′(~p) =
√

~p2 +M2
ψ′ with M2

ψ′ > M2. Note that since P 2 = E2 − ~p2 is Lorentz-

invariant, it must be equal to a constant and thus the energy must take this general form.
Although we don’t specify what the |ψ′

~p〉 states are, they include multiparticle states with
total 3-momentum ~pψ′ and possibly also single-particle bound states with mass greater than
M . Collectively, we will refer to all the states above the vacuum (one-particle and higher)
as {|ψ~p〉}

It is also useful to think about the effects of Lorentz boosts on the system. These act on
spacetime according to

xµ → x
′µ = Λµνx

ν . (6)

We will study these in more detail later on in the course, but for now, all we need to know
as that such boosts can be implemented by an operator U(Λ) on the Hilbert space. This
operator does not alter the vacuum (by assumption):

U |Ω〉 = |Ω〉 . (7)

On the field operator, we have

U(Λ)φ(x)U−1(Λ) = φ(Λ−1x) . (8)

This implies U(Λ)φ(0)U−1(Λ) = φ(0). For the states carrying momentum (one-particle or
otherwise), we can always rewrite them as a boost operator U(Λ~p) acting on a state with
zero 3-momentum:

|ψ~p〉 = U(Λ~p)|ψ0〉 . (9)

In this way, we can think of all the different one-particle states as boosts of the state with a
single particle at rest, pµ = (M,~0).

The completeness of the set of momentum eigenstates can be written as

I = |Ω〉〈Ω|+
∑

ψ

∫

d3p

(2π)3
1

2Eψ(~p)
|ψ~p〉〈ψ~p| . (10)

Here, the sum over ψ includes the one-particle and other states, and it only runs over states
that are not related to each other by a Lorentz transformation. In other words, it runs only
over the |ψ〉0 states since the rest can be obtained by boosting.

Let us now insert this resolution of the identity into the matrix element of a pair of fields:

〈Ω|φ(x1)φ(x2)|Ω〉 = 〈Ω|φ(0)e−iP ·(x1−x2)φ(0)|Ω〉 (11)

= |〈Ω|φ(0)|Ω〉|2 +
∑

ψ

∫

d3p

(2π)3
e−ipψ·(x1−x2)

2Eψ(~p)
|〈Ω|φ(0)|ψ~p〉|2 (12)

= 0 +
∑

ψ

∫

d3p

(2π)3)

e−ipψ ·(x1−x2)

2Eψ(~p)
|〈Ω|φ(0)|ψ0〉|2 (13)
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In the last line we have used |ψ~p〉 = U(Λ~p)|ψ0〉 and we have taken 〈Ω|φ(0)|Ω〉 = 0. There
is nothing to guarantee that this quantity vanishes, but if it does not, we can use a shifted
field variable φ′(x) = φ(x)− |〈Ω|φ(0)|Ω〉| for which this is true.

Using the fact that Eψ(~p) =
√

~p2 +M2
ψ and putting in a time ordering, Eq. (13) implies

〈Ω|T{φ1φ2}|Ω〉 =
∑

ψ

∫

d4p

(2π)4
i

p2 −M2
ψ + iǫ

e−ip·(x1−x2)|〈Ω|φ(0)|ψ0〉|2 (14)

=

∫ ∞

0

ds

2π
ρ(s)DF (x1 − x2; s) , (15)

where DF (x1 − x2; s) is the Feynman propagator for a free field of mass m2 = s, and ρ(s) is
defined to be

ρ(s) =
∑

ψ

(2π)δ(s−M2
ψ)|〈Ω|φ(0)|ψ0〉|2 (16)

The result of Eq. (15) is called the Källén-Lehmann spectral representation. In the free
theory, we would just have ρ(s) = 2πδ(s − m2) and the 2-point function reduces to the
Feynman propagator with s = m2. In the interacting theory, ρ(s) is a non-trivial spectral
function that characterizes the set of excitations in the theory. With our assumption of an
isolated one-particle state of mass M , it takes the form

ρ(s) = 2π Z δ(s−M2) + ρ̄(s) , (17)

where Z = |〈Ω|φ(0)|~p〉|2 > 0. We illustrate the form of ρ(s) under this assumption in Fig. 1.
Above the one-particle state, there could be isolated bound states, and there will definitely
be a continuum of multi-particle states at s ≥ (2M)2. As a function in the complex s plane,
distinct particles correspond to isolated poles, while the continuum of multiple particles
corresponds to a branch cut along the real line.

1.2 Lehmann, Symanzik, and Zimmermann (LSZ)

The LSZ reduction formula is one of the key tools in perturbative quantum field theory. It
relates the vacuum matrix elements of time-ordered products of field operators to the matrix
elements for particle scattering. We will not go through the proof of the formula (which can
be found in Peskin&Schroeder [1]), but we will try to motivate it.

Consider first our spectral representation of the 2-point function. Let us Fourier transform
the result to momentum space:

∫

d4x eik·x〈Ω|T{φ(x)φ(0)}|Ω〉 =
∫ ∞

0

ds

2π
ρ(s)

i

k2 − s+ iǫ
. (18)

If we now apply our assumption of an isolated one-particle state, this becomes
∫

d4x eik·x〈Ω|T{φ(x)φ(0)}|Ω〉 = i Z

k2 −M2 + iǫ
+

∫ ∞

>M2

ds

2π
ρ̄(s)

i

k2 − s+ iǫ
. (19)
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Figure 1: Schematic depiction of the spectral function in a theory with a weak interaction.

Viewed as a function in the complex k0 plane, this quantity has an isolated pole at k0 =

+
√

~k2 +M2 + iǫ, corresponding to the physical energy of a one-particle state with momen-
tum ~k and mass M , as well as a more complicated and undertermined structure further out
in the k0 plane. This means that if we want to focus on the one-particle state and ignore
the rest of the junk that comes up, we just need to isolate the k0 pole.

The LSZ reduction formula is just a generalization of this observation. It states that the
connected amplitude for an initial state with m well-separated particles in the initial state at
t→ −∞ with 3-momenta ~k1, ~k2, . . . , ~km to go to a final state with n well-separated particles
at t→ +∞ with 3-momenta ~p1, ~p2, . . . , ~pn is given by

〈~p1 . . . ~pn|~k1 . . .~km〉c = (20)
(

lim
k2
1
→M2

. . . lim
k2m→M2

)(

lim
p2
1
→M2

. . . lim
p2n→M2

)

in+m

(
√
Z)(m+n)

∫

d4z1 e
−ik1·z1(∂2z1+M

2) . . .

∫

d4zm e−ikm·zm(∂2zm+M
2)

∫

d4x1 e
ip1·x1(∂2x1+M

2) . . .

∫

d4xn e
ipn·xn(∂2xn+M

2)

〈Ω|T{φ(x1) . . . φ(xn)φ(z1) . . . φ(zm)}|Ω〉

=

(

lim
k2
1
→M2

. . . lim
k2m→M2

)(

lim
p2
1
→M2

. . . lim
p2n→M2

)

in+m

(
√
Z)(m+n)

(21)

m
∏

i=1

[
∫

d4zi e
−iki·zi(−k2i +M2)

] n
∏

j=1

[
∫

d4xj e
ipj ·xj(−p2j +M2)

]

〈Ω|T{φ(x1) . . . φ(xm)φ(z1) . . . φ(zn)}|Ω〉

To get the second line, we have integrated by parts in each of the integrals.
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As an operational tool, the LSZ formula can be applied to find the matrix element
for 〈~p1 . . . ~pn|~k1 . . .~km〉c by following a few simple steps. First, compute the (m + n)-point
function and take its Fourier transform using

∫

d4z e−ik·z for all incoming particles and
∫

d4x eip·x for all outgoing ones. Next, identify all the poles at k2i = M2 and p2j = M2.
Cancel off the poles in the terms that contain a product of all of them and set everything
else to zero. Finally, take the limit k2i → M2 and p2j → M2. This procedure isolates the
part of the (m + n)-point function that corresponds to m isolated initial particles and n
isolated final particles. The portion of the (m+ n)-point function that does not have all the
necessary poles vanishes when it is multiplied by the (p2 −M2) factors and the p2 → M2

limit is taken.1

Let us apply this result to the 3-point function in the interacting theory with ∆V = gφ3/3!
that we computed to order g1 in note-3 (see Fig.1). Recall that we had

G(3)(x1, x2, x3) = (−ig)
∫

d4z DF (x1 − z)DF (x2 − z)DF (x3 − z) (22)

+
(−ig)
2

∫

d4z DF (z − z)DF (x3 − z)DF (x1 − x2) + (permutations) .

Fourier transforming the first term (with three initial states) produces

T1 = (2π)4δ(4)(p1 + p2 + p3) (−ig)
i

p21 −M2

i

p22 −M2

i

p23 −M2
. (23)

This has three poles right where we expect them. On the other hand, the Fourier transform
of the second term is

T2 = (2π)4δ(4)(p1 + p2 + p3)

[
∫

d4k

(2π)4
i

k2 −M2

]

i

p21 −M2

i

p23 −M2
(2π)4δ(4)(p3) , (24)

which disappears when it is multiplied by (p21 −M2)(p22 −M2)(p23 −M2), as do the permu-
tations. Applying the LSZ formula therefore produces

〈Ω|~p1~p2~p3〉c = (−ig)× (2π)4δ(4)(p1 + p2 + p3) . (25)

Note that we would have obtained the nearly same result if we had put some of the particles
in the final state. The only difference would have been pi → −pi in the delta function for
every final-state particle. The delta function therefore enforces the overall conservation of
energy and momentum. It turns out that this is a universal feature.

The terms that vanish when the LSZ formula is applied to the 3-point function (at order
g1) correspond to disconnected diagrams. These diagrams contain one or more particles that
just pass through without interacting with the others at all. They are not what we are
interested in when we compute scattering, and it is a useful feature of the LSZ formula that
they are automatically removed. This is also why we said that the resulting matrix element
is connected.

1 I’m being sloppy with the ıǫ factors here, but feel free to put them in as needed.
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1.3 The S-Matrix

Our result for matrix elements between incoming and outgoing particles that are well-
separated at spacetime infinity is frequently written in terms of an S-matrix. If we restrict
ourselves to well-separated sets of particles at t → ±∞, we can map these states in an
obvious way to the set of momentum eigenstates of a free field theory. In this picture, the
free states at t→ −∞ are called IN states and those at t→ +∞ are called OUT states.

The matrix elements of interest for scattering are therefore

OUT 〈~p1 . . . ~pn|~k1 . . .~km〉IN , (26)

where the value of the inner product is defined to be equal to the value obtained between the
corresponding states in the interacting theory. The S matrix is defined to be the mapping
between these two different but equivalent Hilbert spaces:

|~k1 . . .~km〉IN = S|~k1 . . .~km〉OUT . (27)

In other words, the S-matrix maps each OUT state to the corresponding element of the IN
Hilbert space, as determined by the dynamics of the interacting theory. It is a map from one
Hilbert space defined at t→ −∞ to an equivalent one at t→ +∞, and it it is invertible. In
the absence of scattering, the S matrix is unity, which is what we found for the free theory.

The key property of the S matrix is that it is unitary. Note that we have

δ({~ki} − {~pi}) = IN〈{~ki}|{~pi}〉IN (28)

= OUT 〈{~ki}|S†S|{~pi}〉OUT . (29)

The orthogonality of the OUT states implies that S†S = I. Physically, the unitarity of the
S matrix corresponds to the conservation of probability, in the sense that the sum over all
the IN to OUT squared matrix elements adds up to one. This is also expected from our
assumption that the time evolution in quantum mechanics is unitary.

We will frequently write

S = eiT ≃ I+ iT , (30)

where the T matrix is Hermitian. The unit term in the expansion of the S matrix corresponds
to the case of no scattering. We will therefore be interested primarily in the T matrix.

2 Feynman Rules in Momentum Space

In the LSZ formula, all the position variables of the n-point function are Fourier transformed.
For this reason, it is useful to formulate Feynman rules directly in momentum space, where
the position variables do not appear at all. Once we have the transformed n-point function,
it is trivial to apply the LSZ formula.

6



2.1 Feynman Rules for the Transformed n-Point Function

We will continue to study the real scalar theory with ∆V = gφ3/3!. Let us define the Fourier
transform of the n-point function by

(2π)4δ(4)

(

n
∑

i=1

pi

)

G̃(n)(p1, . . . , pn) =

(

n
∏

i=1

∫

d4xi e
−ipi·xi

)

〈Ω|T{φ(x1) . . . φ(xn)}|Ω〉 . (31)

The Feynman rules for the order-gM portion of the momentum space n-point function are:

1. Draw an external line for each momentum pi with one fixed end and one free end.

2. Put in M vertices, each with three lines (with free ends) coming out of it.

3. Assemble all the Feynman diagrams by connecting the free ends of the external lines
and the vertex lines to each other in pairs in all possible ways.

4. Remove all the diagrams with vacuum bubbles and any diagram that has one lines
with an unconnected free end.

5. Assign a value to each diagram:

a) Each line gets a propagator factor of i/(p2−M2+iǫ). The four-momentum p is equal
to pi on external lines. The momentum on any other internal line is undertermined at
this point, so call it whatever you like, qj say.

b) Write a factor of −ig for each vertex.

c) Add a factor of (2π)4δ(4)(
∑

ki) for each vertex, where the sum runs over all momenta
(internal or external) flowing into the vertex (with ki → −ki if the momentum is
flowing out of the vertex). Also, if a pair of external lines pi and pj are connected, add
a factor of (2π)4δ(4)(pi + pj). The delta functions arise automatically from the Fourier
transforms, and they have the effect of imposing the conservation of four-momentum
at each vertex.

d) Integrate over each of the internal momenta:
∫

d4qj/(2π)
4.

e) Multiply each diagram by its symmetry factor.

The resulting sum of the diagrams is the order-gM contribution to G̃(n)(p1, . . . , pn) times the
overall delta function.

All this may sound complicated, but it is really pretty easy once you see a few examples
and get the hang of it. Consider first the 2-point function at leading order:

(2π)4δ(4)(p1 + p2) G̃
(2)(p1, p2) = (2π)4δ(4)(p1 + p2)

i

p21 −M2
(32)

⇒ G̃(2)(p) =
i

p2 −M2
. (33)

Note that this would normally depend on two arguments, but since p1 + p2 = 0 is enforced
by the overall delta function, it is conventional to write it with just a single argument
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p = p1 = −p2. Going to order g2, the relevant diagrams are just like in Fig.2 of notes-3.
After cancelling off the overall factor of (2π)4δ(4)(p1+p2) we find that the first diagram (from
left to right) is equal to

D1 =

[

1

2

](

i

p2 −M2

)2 ∫
d4q

(2π)4
i

q2 −M2

i

(p− q)2 −M2
, (34)

the second is

D2 =

[

1

2

](

i

p2 −M2

)2
i

(0−M2)

∫

d4q

(2π)4
i

q2 −M2
, (35)

while the third is given by

D3 =

[

1

4

](

i

p2 −M2

)2 [∫
d4q

(2π)4
i

q2 −M2

]2

(2π)4δ(4)(p) . (36)

Of the three, this last piece is the only disconnected one. In each case, the q integrations
run over the momenta that are not completely fixed by momentum conservation.

Applying our Feynman rules to the 3-point function at order-g1, it is straightforward to
check that the results of Eqs. (23,24) are reproduced.

2.2 Feynman Rules for Connected Amplitudes

With Feynman rules formulated in momentum space, it is now really easy to compute the
connected amplitudes for scattering using the LSZ formula. The procedure to find the
amplitude for 〈~p1~p2 . . . ~pn|~k1 . . .~km〉c at order gM is:

1. Use the rules outlined above to find the perturbative value of G̃(m+n)(−p1,−p2, . . . ,−pn, k1, k2)
keeping terms up to order gM .

2. Remove all the diagrams that are not completely connected.

3. Cancel off all the external propagator factors. Equivalently, multiply each diagram by
(−i)n+m∏n

i=1(p
2
i −M2 + iǫ) ×∏m

j=1(k
2
j −M2 + iǫ).

4. Find
√
Z perturbatively by computing the 2-point function up to order gM , multiply

everything by 1/(
√
Z)(n+m), and keep terms only up to order gM .

5. Take the limit p2i →M2 for all external momenta.

The final result of all these steps is 〈~p1~p2 . . . ~pn|~k1 . . .~km〉c
As a simple example, let us compute the connected amplitude for 〈~p2~p3|~p1〉 at order g1.

The only connected part is the first term T1 found in Eq. (23). Following our rules, the
amplitude at this order is

〈~p2~p3|~p1〉 = (−ig)× (2π)4δ(4)(p2 + p3 − p1) . (37)
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This result explains why we assign a value of −ig to each vertex.

The only slightly tricky part about these rules are the factors of
√
Z. Recall that this

factored emerged in the Källén-Lehmann spectral representation in the form of Eqs. (17,19).
They are called wavefunction renormalization factors, and they come from interactions
changing the normalization of the field as defined by the residue of the one-particle pole
of the 2-point function. In the present case, we have Z = 1+Ag2+ . . ., so we can take Z = 1
if we are working to leading non-trivial order in the coupling. This will be the case for most
of what we will do, but we will come back later on in the course to discuss how to deal with
the wavefunction factors properly.

3 Scattering and Decays

We are now equipped to begin computing physical observables in the form of scattering
cross sections and particle decay rates. These are the main types of observables that one
uses perturbative quantum field theory to calculate.

3.1 Scattering Cross Sections

A typical scattering experiment consists of an initial state of two well-separated particles that
collide with each other to create a final state with n independent particles that propagate off
to infinity (or thereabouts). Using perturbation theory, we can compute the vacuum matrix
element 〈Ω|T{φ(x3) . . . φ(xn+2)φ(z1)φ(z2)|Ω〉. The LSZ formula then allows us to relate this

vacuum matrix element to the connected matrix element 〈~p2 . . . ~pn+2|~k1~k2〉c. This quantity
is related to the scattering amplitude M by

− iM = 〈~p3 . . . ~pn+2|~k1~k2〉c
/

(2π)4δ(4)(k1 + k2 − p3 − . . .− pn+2) . (38)

Since the connected matrix element is always proportional to the overall four-momentum
delta function, this equation just says that we should cancel off this delta function to get
the amplitude.

The 2 → n scattering cross section, corresponding to the total probability of non-trivial
scattering per unit initial flux, is related to the scattering amplitude by

σ =
S

|~v1 − ~v2|
1

2E1 2E2

∫

d3p3
(2π)32E3

. . .

∫

d3pn+2

(2π)32En+2
(2π)4δ(4)(k1 + k2 −

n+2
∑

i=3

pi) |M|2 , (39)

where |~v1 − ~v2| is the magnitude of the initial relative velocity (which goes to unity in the
extreme relativistic limit), and S is a combinatoric factor equal to one times 1/k! for every
set of k identical particles in the final state. Derivations of this result can be found in
Peskin&Schroeder [1], Srednicki [2], and Griffiths [3].
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Figure 2: Feynman diagrams for e.g. 1.

The result of Eq. (39) has a lot going on within it, but its physical content is very

simple. First, M|2 is the probability density for a single initial state ~k1 + ~k2 to scatter into
the specific final state ~p3 + . . . + ~pn+2. The delta function enforces overall four-momentum
conservation. The scattering probability density is then summed over all distinct final states
with a relativistic normalization. Collectively, this set of final states is often called the phase
space. The prefactor before the integrations is a normalization to convert the result for a
single initial state to the scattering probability rate per unit incident flux (= number of
incident particles per unit area per unit time). At the end of the day, the cross section has
units of area. The factor of S accounts for sets of indistinguishable particles.

e.g. 1. 2 → 2 Scattering in the gφ3/3! Theory
To compute the scattering amplitude, we need to draw all the Feynman diagrams for this
theory that can contribute. For now, we will only compute the leading non-trivial
contribution in g. This comes from the diagrams in Fig. 2, which I have drawn with time
going from left to right, and p1 and p2 as the initial momenta and p3 and p4 as the final
momenta. The amplitude at this order is

− iM = (−ig)2
[

i

(p1 + p2)2 −M2
+

i

(p1 − p3)2 −M2
+

i

(p1 − p4)2 −M2

]

. (40)

These three diagrams are called s-, t-, and u-channel respectively. This designation
corresponds to the three Lorentz invariant combinations of momenta relevant for 2 → 2
scattering:

s = (p1 + p2)
2 = (p3 + p4)

2 (41)

t = (p1 − p3)
2 = (p2 − p4)

2 (42)

u = (p1 − p4)
2 = (p2 − p3)

2 . (43)

Note that s+ t + u = 4M2. In terms of these combinations, we have

M = g2
[

1

s−M2
+

1

t−M2
+

1

u−M2

]

. (44)
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e.g. 2. Elastic Scattering in the CM Frame
Consider the 2 → 2 elastic scattering of a pair of particles of mass M . We will work in the
center-of-mass (CM) frame where the sum of the initial three-momenta vanishes. It is
conventional to choose the z-axis in the direction of the incoming particles. Specifically,

p1 = (E, 0, 0, p), p2 = (E, 0, 0,−p) . (45)

with E =
√

p2 +M2. Applying the overall conservation of energy and momentum, the
outgoing momenta must take the form

p3 = (E, p sin θ, 0, p cos θ), p4 = (E,−p sin θ, 0,−p cos θ) , (46)

where we have chosen to align the ~p3 axis to simplify the form of p3. In terms of these
values, we can express the momentum invariants s, t, and u as

s = 4(M2 + p2), t = −p2(1− cos θ)2, u = −p2(1 + cos θ)2 . (47)

The scattering cross section in this frame is

σ =
(1/2!)

|~v1 − ~v2|
1

4E2

∫

d3p3
2E3(2π)3

∫

d3p4
2E4(2π)3

(2π)4δ(4)(p1 + p2 − p3 − p4) |M|2 (48)

=
1

|~v1 − ~v2|
1

32(2π)2E2

∫ ∞

0

dp′ p
′2

∫

dΩ |M|2 δ(2E − 2
√

p′2 +M2) (49)

=
1

|~v1 − ~v2|
1

64πE2

p

E

(

1

4π

∫

dΩ |M|2
)

. (50)

Sometimes 2 → 2 scattering is characterized by the differential cross section per unit solid
angle, given in this case by

dσ

dΩ
(θ, φ) =

1

|~v1 − ~v2|
1

256π2E2

p

E
|M|2 , (51)

where dΩ = d(cos θ) dφ.

3.2 Decays

The decays of an unstable particle are probabilistic, but are characterized by an average
decay rate Γ. Specifically, given an initial sample of N0 particles at time t = 0, the number
of particles after time t is

N(t) = N0e
−Γt . (52)

The lifetime τ of a particle species is defined to be

τ = 1/Γ . (53)
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Sometimes you will also hear of half-lives, given by τ1/2 = τ ln 2. In natural units, the decay
rate has units of mass.

The decay rate can be computed using the LSZ formula, even though this formula only
really applies to stable particles that are able to propagate off to infinity. However, it
turns out that the LSZ formula is also a good approximation for particles that are unstable
but whose decay rates are very slow relative to their mass. In this case, the partial rate
for an unstable particle of mass M at rest to decay to a final state containing n particles
(1 → 2 + 3 + . . .+ n + 1) is

Γ(1 → n) =
S

2M

∫

d3p2
2E2(2π)3

. . .

∫

d3p2
2E2(2π)3

(2π)4δ(4)(p1 −
n+1
∑

i=1

pi)|M|2 , (54)

where |M|2 is the corresponding 1 → n amplitude defined in the same way as for scattering,
and S is the symmetry factor. The total decay rate is the sum of the partial rates Γf of all
the individual decay channels,

Γ =
∑

f

Γf = Γ
∑

f

BRf , (55)

where BRf = Γf/Γ is the branching ratio to the final state f .
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