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Our remaining task is to justify the photon propagator and external state sums we
presented in the Feynman rules for QED. In doing so, we will also gain some intuition
about how the gauge invariance of the theory manifests itself in terms of Feynman diagrams.
It also turns out that the methods we used to develop the quantum theories of scalars and
fermions are somewhat inconvenient for treating vector fields related to gauge invariance
(such as the photon). For this, we will instead use the path integral formulation of quantum
mechanics to handle the photon field.

1 Path Integral Quantization

You may or may not have encountered path integrals in your previous quantum mechanics
courses. If not, don’t worry too much since we will present everything you need to know
here. Also, don’t worry too much about mathematical rigour. We don’t really know how to
define path integrals in a fully rigourous way. Nevertheless, they are extremely useful and
they give a very nice intuitive picture of quantum mechanics. My favourite treatment of
path integrals is Appendix A of Ref. [1], and much of these notes follows this text.

1.1 Path Integrals for Bosonic Fields

We defined the functional derivative previously according to

δf(φ(x))

δφ(x′)
=
∂f

∂φ
δ(4)(x− x′) . (1)

This is just a continuous generalization of ∂µf(x) = δ ν
µ (∂f/∂xν). Functional (or path)

integrals will turn out to be an analagous generalization.

Let us first define the functional integral of the field φ(t, ~x) at the fixed time ti. For this,
we divide space into a lattice of points {~xj} labelled by j = 1, . . .M . The functional integral
at time ti is then defined to be

∫
[D ′φi] ∼ lim

M→∞

M∏

j=1

[∫ ∞

−∞

dφ(ti, ~xj)

]
, (2)

where the squiggle means equality up to an overall factor. The functional integral is therefore
just the product of integrals over the field value at each points in space. As you can imagine,
taking the continuum limit M → ∞ is highly non-trivial, and not even necessarily well-
defined.
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To define the full path integral, let us take the time interval [t′, t′′] and subdivide it into
(N+1) pieces. Take t′ = t0 and t′′ = tN+1, with ti as the i-th intermediate time slice. The
full path integral with fixed endpoints φ(t′, ~x) = φ′(~x) and φ(t′′, ~x) = φ′′(~x) is then

∫
[Dφ]φ

′′

φ′ ∼ lim
N→∞

N∏

i=1

∫
[D ′φi] . (3)

Note that the endpoints are fixed, and do not get integrated over. In many cases we will
take t′ → −∞, t′′ → ∞, and force φ′, φ′′ → 0. We will write the resulting path integral in
this case as simply

∫
[Dφ]. It is equivalent to the more symmetric expression

∫
[Dφ] ∼

∏

x

[∫ ∞

−∞

dφ(t, ~x)

]
. (4)

You should think of this as a sum over all possible spacetime configurations of the field φ.
You should also think of the product over points in spacetime x = (t, ~x) as the product over
a lattice of points xi = (ti, ~xi) in the limit that the lattice spacing is taken to zero.

The bad new about path integrals is that this definition is rather less than precise.
However, the good news is that we only ever do a small number of different types of integrals.
The first, and easiest, is

∫
[Dφ] δ[φ− φ′]S[φ] = S[φ′] , (5)

where S[φ] is any functional of the fields and φ′ is a specific function (i.e. a specific field
configuration). The delta functional can also be written as a path integral, just like we have
for the usual delta function. To derive it, note first that the delta functional is the product
of delta functions at each point in spacetime, since both are zero unless the argument is the
zero function:

δ[φ] ∼
∏

x

δ(φx) , (6)

where φx = φ(x) is the value of the field at point x (and not a function of x). We also have

δ(φx) =

∫
dωx
2π

eiωxφx . (7)

It follows that

δ[φ] ∼
∏

x

(∫
dωx e

iωxφx

)
(8)

∼

(
∏

x

∫
dωx

)
exp(i

∑

x

ωxφx) (9)

∼

∫
[Dω] exp

[
i

∫
d4xω(x)φ(x)

]
. (10)
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The second kind of integral we will encounter is the Gaussian. Recall that

∫ ∞

−∞

dx e−αx
2

=

√
π

α
. (11)

The path integral Gaussian is just a multi-dimensional generalization of this. To compute
it, it is convenient to think of the set of all functions on spacetime as an infinite-dimensional
vector space with an inner product given by

f · g =

∫
d4x f(x)g(x) . (12)

An element of the space is just a function f , and f(x) is the x-th component of the function.1

The integrand of the functional Gaussian integral is

exp [−φ · (∆φ)] = exp

[
−

∫
d4x φ(x)∆φ(x)

]
, (13)

where ∆ is a differential operator with only even powers of ∂2. Since φ vanishes at the
boundary, this operator is Hermitian with respect to the inner product. It follows that we
can expand any function φ in terms of a set of basis functions {fA} such that

∆ fA = λAfA , (14)

and
∫
d4x fAfB = δAB . (15)

Expanding φ in terms of these basis functions gives

φ(x) =
∑

A

φA fA(x) , (16)

where φA is the A-th expansion coefficient. The Gaussian integrand then becomes

exp [−φ · (∆φ)] = exp

[
−
∑

A

λAφ
2
A

]
=
∏

A

e−λAφ
2

A . (17)

Since any field configuration can be specified completely by the expansion coefficients φA,
integrating over them is equivalent to doing the path integral. Thus, we have

∫
[Dφ] ∼

∏

A

[∫ ∞

−∞

dφA

]
. (18)

1You’ve seen this in QM: if |ψ〉 is a state, ψ(x) = 〈x|ψ〉 is the x-th component in the position basis.
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Putting these pieces together, we see that

∫
[Dφ] e−φ·(∆φ) ∼

∏

A

[∫
dφA e

−λAφ
2

A

]
(19)

∼
∏

A

(
π

λA

)1/2

(20)

∼ (detA)−1/2 . (21)

Note that defining the determinant of an operator to be the product of its eigenvalues
coincides with what we would find for a finite-dimensional diagonalizable matrix.

1.2 Path Integral Quantization of the Free Scalar

Recall that we discussed eigenstates of the Schrödinger-picture field operator φ(~x) = φ(0, ~x):

φ̂(~x)|φ′〉 = φ′(~x)|φ′〉 . (22)

On the left-hand side we have the field operator (denoted by the hat), while on the right-
hand side we have the specific classical field function that is its eigenvalue. In the Heisenberg
picture, we have

φ̂(x) = φ̂(t, ~x) = eiHtφ̂(0, ~x)e−iHt . (23)

In this picture, we can also form comoving eigenstates defined by

|φ′(t)〉 = eiHt|φ′〉 . (24)

These obviously satisfy

φ̂(t, ~x)|φ′(t)〉 = φ′(~x)|φ′(t)〉 . (25)

Note that these comoving eigenstates evolve oppositely to physical states in the Schrödinger
picture.

The key result that I will state without proof is [1]

〈φ′′(t′′)|T{φ̂(x1) . . . φ̂(xn)}|φ
′(t′)〉 =

∫
[Dφ]φ

′′

φ′ exp

[
i

∫ t′′

t′
dt L(φ, φ̇)

]
φ(x1) . . . φ(xn) , (26)

where t′ < t1, . . . , tn < t′′. This is a very deep relation. On the left side is a quantum
mechanical matrix element of an operator. On the right, we just have a complicated sum
over classical field configurations weighted by the action!

For scattering calculations, we only need to find the expectation values of operators in
the vacuum state |Ω〉 of the theory. As before, we can project it out by taking the limit of
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t→ ±∞ in a slightly imaginary direction. For example,

lim
t→−∞(1−iǫ)

|φ′(t)〉 = lim
t→−∞(1−iǫ)

eiHt
′

(
∑

λ

|λ〉〈λ|

)
|φ′〉 (27)

= lim
t→−∞(1−iǫ)

[
|Ω〉〈Ω|φ′〉+

∑

λ6=Ω

eiEλt|λ〉〈λ|φ′〉

]
(28)

= (〈Ω|φ′〉) |Ω〉 (29)

Instead of tilting t, we can instead add a small perturbation to the energy to make it slightly
imaginary. A convenient way to do this in a field theory is to make the mass slightly
imaginary, since the corresponding φ2 operator is positive definite,

− L ⊃ m2φ2 → (m2 − iǫ)φ2 , (30)

with ǫ > 0. This induces

H (m2 − iǫ) → H (m2) +
∂H

∂m2
(−iǫ) = H (m2)− iǫ′ , (31)

with ǫ′ > 0 since ∂H /∂m2 > 0 in any sensible theory. This gives

Eλ → Eλ − iǫ′ , (32)

which projects out the vacuum when inserted in Eq. (28).

After applying this projection, we obtain our master formula

〈Ω|T{φ̂(x1) . . . φ̂(xn)}|Ω〉 =

∫
[Dφ] eiS

′[φ] φ(x1) . . . φ(xn)

/∫
[Dφ] eiS

′[φ] , (33)

where the S ′ is the action with a slightly imaginary mass, and we have normalized the
right-hand side so that 〈1〉 = 1. This formula should remind you of a statistical mechanical
partition function, with eiS

′

instead of e−H/T as the exponential weight.

To study operator expectation values, let us define the generating functional Z[J ] by

Z[J ] =

∫
[Dφ] exp(iS[φ] + iJ ·φ) =

∫
[Dφ] exp

[
i

∫
d4x (L + Jφ)

]
, (34)

where J(x) is an unspecified function and J·φ =
∫
d4x J(x)φ(x) as before. The function J(x)

is often called the source. Suppose we take the functional integral of Z[J ] with respect to
J(x). This has the effect of adding a power of iφ(x) to the integrand:

δZ[J ]

δJ(x)
=

∫
[Dφ]

δ

δJ(x)
eiS[φ]+J ·φ (35)

=

∫
[Dφ]

[∫
d4y iφ(y) δ(4)(y − x)

]
eiS[φ]+J ·φ (36)

=

∫
[Dφ] iφ(x) eiS[φ]+J ·φ (37)
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Taking more derivatives would add more powers of φ. We can use this to rewrite our master
formula, Eq. (33), as

〈Ω|T{φ̂(x1) . . . φ̂(xn)}|Ω〉 = (−i)n
δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

/
Z[0] . (38)

Setting J → 0 after taking the derivatives gets rid of the J · φ in the exponential, and
normalizing by 1/Z[0] ensures that 〈1〉 = 1.

So far, all our results are completely general and apply to both free and interacting scalar
theories. Let us now apply them specifically to the free scalar theory,

L =
1

2
(∂φ)2 −

1

2
(m2 − iǫ)φ2 . (39)

after integrating by parts, this gives

S[φ] =
1

2

∫
d4x φ(−∂2 −m2 + iǫ)φ (40)

:=
1

2
φ·(∆φ) , (41)

with ∆ = (−∂2−m2+ iǫ). When inserted into the path integral, this will just be a Gaussian
which we know how to evaluate.

We can evaluate the generating functional for the free theory Z0[J ] explicitly by com-
pleting the square and computing the Gaussian path integral. For this, note that

∆ DF (x) = (−∂2 −m2 + iǫ)

∫
d4p

(2π)4
i

p2 −m2 + iǫ
e−ip·x (42)

= iδ(4)(x) . (43)

We can therefore think of −iDF = ∆−1. The trick for evaluating is to make the change of
variable

φ(x) = φ′(x)−

∫
d4y (−i)DF (x− y)J(y) := φ′(x)− (∆−1J)(x) . (44)

In the exponential of Z[J ], this gives

S[φ] + J ·φ =
1

2
(φ′ −∆−1J) · [∆(φ′ −∆−1J)] + J ·(φ′ −∆−1J) (45)

=
1

2
φ′ ·(∆φ′)−

1

2
J · (∆−1J) (46)

=
1

2

∫
d4xφ′∆φ′ +

i

2

∫
d4x

∫
d4y J(x)DF (x− y)J(y) . (47)

In going from the first to the second line we have implicitly integrated by parts to move the
∆ operator around. The integrand in terms of φ′ is now a Gaussian. Since the change of
variables was just a shift by a constant, the path integral measure is also unchanged,

[Dφ] = [Dφ′] . (48)
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It follows that the free-theory generating functional is equal to

Z0[J ] ∼ (det∆)−1/2 exp

[
−
1

2

∫
d4x

∫
d4y J(x)DF (x− y)J(y)

]
. (49)

Note that the iǫ factor inserted to project out the ground state leads to the Feynman
propagator in this expression. It also ensures the convergence of the Gaussian integral.

We can now use Eq. (38) to compute n-point functions in the free theory. The 2-point
functions comes out to be

(−i)2
δ2

δJ(x) δJ(y)

(
e−

1

2
J ·DF ·J

)∣∣∣∣
J=0

= (−1)2DF (x− y) , (50)

which is precisely what we found previously. We also see that the propagator really is the
inverse of the quadratic operator in the Lagrangian. Repeating with more derivatives, we
reproduce just Wick’s theorem in a very trivial way. In this case, the contraction of two
fields corresponds to the corresponding derivatives hitting the same term in the expansion
of the exponential.

1.3 Path Integrals for Fermions

We can also quantize fermion fields using path integrals. For this, we need to define regular
derivatives and integrals of Grassmann numbers. Suppose we have a single Grassmann
number η. Since η2 = 0, the most general real function of η is

f(η) = a+ bη , (51)

for some real coefficients a and b. We define the derivative by

d

dη
1 = 0,

d

dη
η = 1 , (52)

so that

d

dη
f(η) = b . (53)

For integrals, we define

∫
dη 1 = 0,

∫
dη η = 1 . (54)

It is best to think of
∫
dη as an operator on functions of η rather than an integral in the

usual sense. This definition implies that

∫
dη

df(η)

dη
= 0 . (55)
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When there are multiple Grassmann numbers, we treat the integral and the derivative as
operators acting from the left, and put everything together by anticommuting. For example,
given η and χ we have

d

dη
χ = 0,

d

dη
(χη) = −

d

dη
(ηχ) = −χ . (56)

Integrals work in the same way.

Having warmed up with regular derivatives and integrals, let’s jump right into functional
derivatives and integrals. We have

δΨa(x)

δΨb(y)
= δ b

a δ
(4)(x− y) . (57)

For the functional integral, we take

∫
[DΨ] ∼

∏

x

[∫
dΨ1(x)

∫
dΨ2(x)

∫
dΨ3(x)

∫
dΨ4(x)

]
. (58)

In other words, do the Grassmann integral over each component of Ψ at every point in
spacetime and multiply together all the results. Note that Ψa(x) should be treated as
independent Grassmann variables in that Ψa(x)Ψb(x

′) is non-zero unless a = b and x = x′.

Evaluating fermionic functional integrals is even easier than for bosons. The case of most
interest to us will the be the Gaussian,

∫
[DΨDΨ̄] exp

[
−

∫
d4x Ψ̄∆Ψ

]
, (59)

where ∆ is a Hermitian differential operator. As before, let us expand Ψ and Ψ̄ in orthonor-
mal eigenfunctions of the operator ∆:

Ψ(x) =
∑

A

ψAgA(x), Ψ̄(x) =
∑

B

ψ̄BhB(x) , (60)

where gA and hA are bosonic functions and ψA and ψ̄B are Grassmannian expansion coeffi-
cients. For the eigenfunctions, we have

∆ gA = λAgA ∆hB = λBhB , (61)

as well as
∫
d4xhB(x)gA(x) = δAB . (62)

Putting this into the integrand, we find

exp
[
Ψ̄ · (∆Ψ)

]
= exp

[
−
∑

A

ψ̄AλAψA

]
=
∏

A

e−ψ̄AλAψA . (63)
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The path integral measure becomes
∫
[DΨDΨ̄] ∼

∏

A

[∫
dψA

∫
dψ̄A

]
. (64)

The Gaussian integral is therefore equal to
∫
[DΨDΨ̄] e−Ψ̄·(∆Ψ) ∼

∏

A

[∫
dψA

∫
dψ̄A e

−ψ̄AλAψA

]
(65)

∼
∏

A

[∫
dψA

∫
dψ̄A (1− λAψ̄AψA)

]
(66)

∼
∏

A

(−λA) (67)

∼ det(∆) . (68)

Note that the determinant has a positive power rather than a negative one. This is charac-
teristic of fermions. The factor of +1 relative to 1/2 comes from the fact that two different
fields are now involved.

With these tools in hand, we can now turn to physics. The master formula for a Dirac
fermion is

〈Ω|T{Ψ̂a1(x1) . . .
ˆ̄Ψbn(xn)}|Ω〉 =

∫
[DΨDΨ̄] eiS

′

Ψa1(x1) . . . Ψ̄
bn(xn)

/ ∫
[DΨDΨ̄] eiS

′

, (69)

where S ′ = S[Ψ, Ψ̄] + iǫΨ̄Ψ. When there are multiple types of fields, we should integrate
over each one of them in the path integral.

To compute n-point functions, it is again convenient to define a generating functional,
this time with a source for each independent field. For a theory of Dirac fermions,

Z[η, η̄] =

∫
[DΨDΨ̄] exp

[
iS[Ψ, Ψ̄] + iη̄ ·Ψ+ iΨ · η

]
. (70)

We now have

δZ

δη̄a(x)
=

∫
[DΨDΨ̄] (−iΨa(x)) e

iS[Ψ,Ψ̄]+iη̄·Ψ+iΨ·η , (71)

δZ

δηb(x)
=

∫
[DΨDΨ̄] (iΨ̄b(x)) eiS[Ψ,Ψ̄]+iη̄·Ψ+iΨ·η . (72)

Note the extra minus sign from anticommuting the fermionic functional derivative. Taking
multiple derivatives and setting η = η̄ = 0, we get

〈Ω|T{Ψa1(x1) . . . Ψ̄
bn(xn)}|Ω〉 =

1

Z[0, 0]

(
−i

δ

δη̄a1(x1)

)
. . .

(
+i

δ

δηbn(xn)

)
Z[η, η̄]

∣∣∣∣
η=η̄=0

(73)

Let’s now specialize to the free theory of a Dirac fermion, with action

S[Ψ, Ψ̄] =

∫
d4x Ψ̄(iγ · ∂ −m+ iǫ)Ψ := Ψ̄ · (∆Ψ) . (74)
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Just like before, we can complete the square in the generating functional Z0[η, η̄] and do the
resulting Gaussian integral. The appropriate changes of variables in this case are

Ψ(x) = Ψ′(x)−

∫
d4y (−i)SF (x− y)η(y) (75)

Ψ̄(x) = Ψ̄′(x)−

∫
d4y (−i)η̄(y)SF (y − x) . (76)

Using the fact that

∆SF (x) = iδ(4)(x) , (77)

we obtain

Z0[η, η̄] ∼ det(∆) exp

[
−

∫
d4x

∫
d4y η̄(x)SF (x− y)η(y)

]
. (78)

This reproduces Wick’s theorem for Dirac fermions.

1.4 Interacting Theories

. . .

2 Quantizing the Photon

We turn next to quantizing the free photon,

L = −
1

4
FµνF

µν . (79)

Path integrals will give us a nice way to remove the gauge redundancy.

2.1 Degrees of Freedom: Massive Vector

Let’s start by counting degrees of freedom in vector fields. Before tackling the photon, let’s
study general, massive vectors. A generic vector field Aµ has four real degrees of freedom.
However, a spin s = 1 state only has three degrees of freedom. What is happening is that
the generic vector decomposes into and s = 0 and s = 1 components under the rotation
subgroup of the Lorentz group. The s = 0 piece can be thought of as the subset of Aµ fields
that can be written as Aµ = ∂µφ for some scalar φ.

We would like to formulate a Lagrangian for a massive vector that eliminates the scalar
component of Aµ from the dynamics in a Lorentz-invariant way. The trick to this is to
impose the constraint ∂µA

µ = 0 and to take the Lagrangian to be

L = −
1

4
FµνF

µν +
1

2
m2AµA

µ (80)

=
1

2
Aµ(ηµν∂

2 − ∂µ∂ν)A
ν +

1

2
m2AµA

µ , (81)
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where we have dropped the total derivative in the second line that will vanish when inserted
into the action. This kinetic term matches what we had for the photon. It looks funny, but
the essential feature is that it annihilates the scalar component of Aµ,

(ηµν∂2 − ∂µ∂ν)∂
µφ = 0 . (82)

Therefore no kinetic term is induced for φ.

It is also possible to couple the massive vector to other stuff. If we were to write an
interaction for Aµ that is linear in the field, it would have to take the form

L ⊃ Aµj
µ , (83)

for some four-vector operator jµ. We would like to avoid having the coupling source Aµ =
∂µφ. Plugging this form into Eq. (83), we find

L ⊃ ∂µφ j
µ = −φ (∂µj

µ) , (84)

up to a total derivative. This implies that the scalar component will not be sourced provided
the operator jµ is a conserved current.

We now see how to consistently write a Lorentz-invariant theory that only keeps the
s = 1 part of Aµ. Using the free Lagrangian of Eq. (81) and possibly with an interaction of
the form of Eq. (83), we find that the scalar part of Aµ has no kinetic term and does not
couple to anything through the interaction. The only equation we have for it comes from
the constraint, which implies

∂2φ = 0 . (85)

The only solution to this that vanishes at infinity is φ = 0. Thus, we have eliminated the
scalar part. For the non-scalar part, the equation of motion is

(∂2 +m2)Aµ = 0 . (86)

This is just the thing we want.

2.2 Degrees of Freedom: Massless Vector

We turn next to the free photon. The Lagrangian can be rewritten as

L = −
1

4
FµνF

µν =
1

2
Aµ(ηµν∂

2 − ∂µ∂ν)A
ν , (87)

where we have again dropped a total derivative. Unlike the massive vector, there is additional
constraint. However, we do have a new gauge invariance under

Aµ → Aµ −
1

e
∂µα , (88)
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for any smooth function α. The interpretation is also different: any two field configurations
related by a gauge transformation are physically equivalent.

The equations of motion are

0 = ∂2A0 − ∂0(∂0A
0 + ∂iA

i) (89)

0 = −∂2Ai − ∂i(∂0A
0 + ∂jA

j) , (90)

where we have written the time and space components separately. Before trying to solve
these equations, it is helpful to choose a specific gauge to make it easier to solve them. A
popular choice is the Coulomb gauge, ∂iA

i = ~∇· ~A = 0. Starting in gauge in which this is not
satisfied, we can always make a gauge transformation such that it is true for the transformed
fields,

0 = ∂iA
i′ = ∂iA

i +
1

e
∂2i α . (91)

This almost completely fixes α, but it does leave a residual gauge freedom to transform by
any α such that ∂2i α = 0. With the Coulomb gauge choice, A0 satisfies

0 = ∂2iA
0 . (92)

The important part about his relation is that there are no time derivatives. The only solution
that vanishes at spatial infinity is A0 = 0. Plugging back into the equation for Ai, we see
that

∂2Ai = 0 (93)

which is the usual wave equation.

Suppose we look for wave solutions, of the form

Aµ = ǫµ(k, λ)eik·x . (94)

The equation of motion forces k2 = 0, while the gauge condition implies

kiǫ
i = 0, ǫ0 = 0 . (95)

These two conditions allow two independent polarization vectors.2 This is just the right
number to describe a massless particle; gauge invariance has removed the unwanted degrees
of freedom! The most general solution is

Aµ =

2∑

λ=1

∫
d̃k
[
a(~k)ǫµ(k, λ)e−ik·x + a∗(~k)ǫµ∗(k, λ)eik·x

]
, (96)

where the polarizations satisify Eq. (95).

2 For k = (k, 0, 0, k), they can be chosen to be ǫµ(k, 1) = (0, 1, 0, 0) and ǫµ(k, 2) = (0, 0, 1, 0).
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2.3 Quantizing the Free Photon

Applying the usual techniques to quantizing the free photon, we run into some challenges
related to gauge invariance. In the canonical picture, the first problem is that the momentum
conjugate to A0 vanishes,

Πν =
∂L

∂(∂0Aν)
= −(∂0Aν − ∂νA0) , (97)

which is clearly zero for ν = 0. This challenge can be overcome by working in the Coulomb
gauge, which removes A0 as a dynamical degree of freedom. However, maintaining the
Coulomb gauge constraint can be cumbersome.

Instead of going the canonical route, let us try working with path integrals. At first
glance, things look even worse. In our previous examples, we found that the propagator was
given by the inverse of the quadratic operator in the Lagrangian. Here the quadratic term
is given by Eq. (87). In momentum space, this operator becomes

Pµν = (−ηµνk
2 + kµkν) . (98)

The problem is that this operator has zero eigenvalues, Pµνk
ν = 0 (equivalent to the

annihilation of ∂µφ in position space). Therefore this operator is not invertible, and our
propagator would seem to be ill-defined.

The second challenge to path-integral quantization is that the sum over field configura-
tions will be highly redundant. We expect to have path integrals like

∫
[DAµ] O(A) eiS[A] , (99)

where O(A) is some operator built out of Aµ fields. In integrating over configurations of Aµ,
we will end up summing over many configurations related by gauge transformations that are
physically equivalent. This will not be so bad if the operator is also gauge invariant, since
the redundant integrations will just produce an overall pre-factor related to the formally
infinite volume of the gauge invariance. Our strategy will be to find a way to factor out the
volume. It turns out that this will also fix the propagator inversion problem.
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