MEASURING THE TAU YUKAWA PHASE AT THE LHC AND ILC

Felix Yu Fermilab

Roni Harnik, Adam Martin, Takemichi Okui, Reinard Primulando, FY Phys. Rev. D88 (2013) 076009 [arxiv: 1308.1094 [hep-ph]]

> Cosmology at Colliders workshop, TRIUMF December 9, 2013

CP and the Higgs

- Sakharov's conditions for baryogenesis motivate searches for new sources of CP violation
- A natural place to test for CP violating phases is with Higgs physics
 - scalar-pseudoscalar admixture
 - couplings to gauge bosons
 - couplings to fermions
 - [full UV models to connect any given CP phase to a baryogenesis mechanism is BTSOTW]

Outline

- Review current status of CP tests in Higgs physics, Higgs decay to taus
- Constructing the Θ variable
- Sensitivity studies at colliders
 - Discuss both e⁺e⁻ machines and LHC (first proposal for an LHC measurement)
 - Comparison with previous proposals
- Summary

Signal strength constraints

ATLAS-CONF-2013-108, CMS PAS-HIG-13-005

Measure acoplanarity angle (angle between Z₁ and Z₂ decay planes)

ATLAS-CONF-2013-013

Measure acoplanarity angle (angle between Z₁ and Z₂ decay planes)

0⁻ excluded in favor of 0⁺ hypothesis at 97.8% C.L.

• Can test combination of $hZ_{\mu}Z^{\mu}$ and $hZ_{\mu\nu}\widetilde{Z}^{\mu\nu}$ couplings

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) = A_1 + A_2 + A_3$$

$$f_{a3} = |A_3|^2 / (|A_1|^2 + |A_3|^2)$$

• Use kinematic discriminant

$$\mathcal{D}_{J^{P}} = \frac{\mathcal{P}_{SM}}{\mathcal{P}_{SM} + \mathcal{P}_{J^{P}}} = \left[1 + \frac{\mathcal{P}_{J^{P}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{SM}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}\right]^{-1}$$

CMS PAS-HIG-13-002

- Can test combination of $hZ_{\mu}Z^{\mu}$ and $hZ_{\mu\nu}\widetilde{Z}^{\mu\nu}$ couplings

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) = A_1 + A_2 + A_3$$

$$f_{a3} = |A_3|^2 / (|A_1|^2 + |A_3|^2)$$

• Results in constraint $f_{a3} = 0.00^{+0.23}_{-0.00}$

 $f_{a3} < 0.58$ at 95% CL.

Testing CPV in Yukawa couplings

- Source of a BSM CPV phase in SM Yukawa couplings is distinct from possible phases in the scalar potential or pseudoscalar couplings to gauge bosons
 - Motivates testing for CPV in fermionic couplings even if bosonic CPV coupling tests give null results
- The Higgs decay to taus is the most promising system for direct measurement of fermionic CPV couplings
 - Top coupling only probed via loops or ttH (tH) production
 - Bottom quark polarizations washed out by QCD

Measuring Higgs to TT

- Use SVFit to reconstruct $m_{\tau\tau}$ (creates likelihood function based on observed kinematics)
 - Anticipating the CP phase measurement, focus on the fully hadronic analysis

10

Measuring Higgs to TT

- Use SVFit to reconstruct $m_{\tau\tau}$ (creates likelihood function based on observed kinematics)
 - Anticipating the CP phase measurement, focus on the fully hadronic analysis
 CMS Preliminary, √s=7-8 TeV, L=24.3 fb⁻¹, H→ττ

Process	1-Jet	VBF
$Z \rightarrow \tau \tau$	428 ± 90	47 ± 28
QCD	210 ± 31	61 ± 10
EWK	41 ± 9	4 ± 1
tī	29 ± 6	2 ± 2
Total Background	709 ± 95	114 ± 30
$H \rightarrow \tau \tau$	9 ± 4	4 ± 2
Observed	718	120

Signal Eff.

$gg \rightarrow H$	$2.52 \cdot 10^{-4}$	$4.99 \cdot 10^{-5}$
$qq \rightarrow H$	$5.93 \cdot 10^{-4}$	$1.20 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t} \text{ or VH}$	$9.13 \cdot 10^{-4}$	$3.59 \cdot 10^{-5}$

11

CMS PAS-HIG-13-004

ATLAS Update

Use BDT output to categorize events

ATLAS-CONF-2013-108 (November 28, 2013!)

ATLAS Update

Use BDT output to categorize events

ATLAS-CONF-2013-108 (November 28, 2013!)

13

ATLAS Update

- Focus on fully hadronic channel
 - Main backgrounds are still irreducible Z →ττ and QCD multijets

Process/Category	VBF		Boosted			
BDT score bin edges	0.85-0.9	0.9-0.95	0.95-1.0	0.85-0.9	0.9-0.95	0.95-1.0
ggF	0.39 ± 0.17	0.35 ± 0.16	2.0 ± 0.9	2.2 ± 0.8	2.5 ± 1.0	2.3 ± 0.9
VBF	0.57 ± 0.18	0.72 ± 0.22	5.9 ± 1.8	0.55 ± 0.17	0.61 ± 0.19	0.57 ± 0.17
WH	< 0.05	< 0.05	< 0.05	0.34 ± 0.11	0.40 ± 0.12	0.44 ± 0.14
ZH	< 0.05	< 0.05	< 0.05	0.22 ± 0.07	0.22 ± 0.07	0.22 ± 0.07
$Z \to \tau^+ \tau^-$	3.2 ± 0.6	3.4 ± 0.7	5.3 ± 1.0	15.7 ± 1.7	12.3 ± 1.8	9.7 ± 1.6
Multijet	3.3 ± 0.6	2.9 ± 0.6	5.9 ± 0.9	5.2 ± 0.6	3.7 ± 0.5	1.40 ± 0.22
Others	0.38 ± 0.09	0.49 ± 0.12	0.64 ± 0.13	1.49 ± 0.27	2.8 ± 0.5	0.07 ± 0.02
Total Background	6.9 ± 1.3	6.8 ± 1.3	11.8 ± 2.6	22.4 ± 2.5	18.8 ± 2.8	11.2 ± 1.9
Total Signal	0.97 ± 0.29	1.09 ± 0.31	8.0 ± 2.2	3.3 ± 1.0	3.8 ± 1.2	3.6 ± 1.1
S/B	0.14	0.16	0.67	0.15	0.2	0.32
Data	6	6	19	20	16	15

ATLAS-CONF-2013-108 (November 28, 2013!)

LHC Summary

CMS combined: $\mu = 1.1 \pm 0.4$

CMS PAS-HIG-13-004 ATLAS-CONF-2013-108

A Tau Yukawa CPV phase

 From an EFT perspective, can readily generate a tau Yukawa phase via the addition of a dimension 6 operator

$$\mathcal{L}_{\text{eff}} \supset -\left(\alpha + \beta \frac{H^{\dagger} H}{\Lambda^2}\right) H \ell_{3\text{L}}^{\dagger} \tau_{\text{R}} + \text{c.c.}$$

- α and β are generally complex
- After inserting Higgs vevs, use the $\tau_{\rm R}$ redefinition to get

$$\alpha + \beta \frac{v^2}{\Lambda^2} = y_\tau^{\rm SM} > 0 \,,$$

– Then, the Higgs coupling to taus is

$$y_{\tau}^{\mathrm{SM}} + 2\beta \frac{v^2}{\Lambda^2}$$

A Tau Yukawa CPV phase

 The new phase can thus be captured by considering the Lagrangian

$$\begin{aligned} \mathcal{L}_{\text{pheno}} \supset -m_{\tau} \, \bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \, h \bar{\tau} (\cos \Delta + \mathrm{i}\gamma_5 \sin \Delta) \tau \\ = -m_{\tau} \, \bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \, h \big(\tau_{\mathrm{L}}^{\dagger} (\cos \Delta + \mathrm{i} \sin \Delta) \tau_{\mathrm{R}} \\ + \mathrm{c.c.} \big) \,, \end{aligned}$$

- $-\Delta = 0$ is SM (CP-even)
- $-\Delta = \pi/2$ is CP-odd (and CP conserving)
- $-\Delta = \pm \pi/4$ is maximally CP-violating
- $-\Delta$ is currently unconstrained

Extracting the phase in Higgs decays

- Need a tau decay that preserves polarization information
 - Some information always lost in escaping neutrinos
 - Use decay via the ρ^{\pm} vector meson (Br = 26%)

$$h \longrightarrow \tau^{-} \tau^{+}$$

$$\longrightarrow \rho^{-} \nu_{\tau} \rho^{+} \bar{\nu}_{\tau}$$

$$\longrightarrow \pi^{-} \pi^{0} \nu_{\tau} \pi^{+} \pi^{0} \bar{\nu}_{\tau} .$$

Matrix element calculation

 Will trace how Δ appears in the squared matrix element by treating the Higgs decay as a sequence of on-shell 2-body decays

$$\mathcal{M}_{h\to\tau\tau} \propto \sum_{s,s'} \chi_{s,s'} \bar{u}_{\tau}^{s} \left(\cos \Delta + i\gamma_{5} \sin \Delta \right) v_{\tau}^{s'}$$
$$\mathcal{M}_{\tau\to\rho\nu} \propto \left(\epsilon_{\rho}^{*} \right)_{\mu} \bar{u}_{\nu\tau} \gamma^{\mu} P_{\mathrm{L}} u_{\tau}$$
$$\mathcal{M}_{\rho\to\pi\pi} \propto \epsilon_{\rho} \cdot \left(p_{\pi^{-}} - p_{\pi^{0}} \right)$$

• Together, gives

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not p_{\pi^{-}} - \not p_{\pi^{0-}}) P_{\text{L}} (\not p_{\tau^{-}} + m_{\tau}) \\ \times (\cos \Delta + i\gamma_5 \sin \Delta) \\ \times (-\not p_{\tau^{+}} + m_{\tau}) (\not p_{\pi^{+}} - \not p_{\pi^{0+}}) P_{\text{L}} v_{\nu^{+}}$$

Matrix element calculation assumptions

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not p_{\pi^{-}} - \not p_{\pi^{0-}}) P_{\text{L}} (\not p_{\tau^{-}} + m_{\tau}) \\ \times (\cos \Delta + i\gamma_5 \sin \Delta) \\ \times (-\not p_{\tau^{+}} + m_{\tau}) (\not p_{\pi^{+}} - \not p_{\pi^{0+}}) P_{\text{L}} v_{\nu^{+}}$$

- Neglect π⁰ exchange (spatially separated; the τ's are boosted and back-to-back in the Higgs rest frame)
- All intermediate particles assumed on-shell
- Neglect $\pi^{\pm}-\pi^{0}$ mass difference
- Obtain $\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^-} \not q_- (e^{i\Delta} \not p_{\tau^-} e^{-i\Delta} \not p_{\tau^+}) \not q_+ P_{\text{L}} v_{\nu^+}$ with $q_{\pm} \equiv p_{\pi^{\pm}} - p_{\pi^{0\pm}}$

- Introduce the variable $k_{\pm}^{\mu} \equiv y_{\pm} q_{\pm}^{\mu} + r p_{\nu^{\pm}}^{\mu}$ with coefficients $y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau^{\pm}}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau^{\pm}}}{p_{\rho^{\pm}} \cdot p_{\tau^{\pm}}},$ $r \equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m^2 + m^2} \approx 0.14.$
- We then write the squared matrix element as $|\mathcal{M}|^2 \propto P_{\mathcal{A},S} + P_{\Delta,\mathcal{S}} + P_{\Delta,S} + P_{\Delta,S}^*$

where the most interesting piece is

$$P_{\Delta,S} \equiv -e^{2i\Delta} \left[(k_{-} \cdot p_{\tau^{+}})(k_{+} \cdot p_{\tau^{-}}) - (p_{\tau^{-}} \cdot p_{\tau^{+}})(k_{-} \cdot k_{+}) - i\epsilon_{\mu\nu\rho\sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma} \right].$$
(26)

$$P_{\Delta,S} \equiv -e^{2i\Delta} \left[(k_{-} \cdot p_{\tau^{+}})(k_{+} \cdot p_{\tau^{-}}) - (p_{\tau^{-}} \cdot p_{\tau^{+}})(k_{-} \cdot k_{+}) - i\epsilon_{\mu\nu\rho\sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma} \right].$$
(26)

• We can define an antisymmetric 2nd-rank tensor

$$F_{\pm}^{\mu\nu} \equiv k_{\pm}^{\mu} p_{\tau^{\pm}}^{\nu} - k_{\pm}^{\nu} p_{\tau^{\pm}}^{\mu} = -F_{\pm}^{\nu\mu}$$
$$P_{\Delta,S} = e^{2i\Delta} \left(\frac{1}{2} F_{-\mu\nu} F_{+}^{\mu\nu} + \frac{i}{4} \epsilon_{\mu\nu\rho\sigma} F_{-}^{\mu\nu} F_{+}^{\rho\sigma} \right)$$

• Or, even better, identify "electric" and "magnetic" components $E_{\pm}^{i} \equiv F_{\pm}^{i0}$, $B_{\pm}^{i} \equiv -\frac{1}{2}\epsilon^{ijk}F_{\pm jk}$ $P_{\Delta,S} = -e^{2i\Delta} \left[(\vec{E}_{-} + i\vec{B}_{-}) \cdot (\vec{E}_{+} + i\vec{B}_{+}) \right]$

$$F_{\pm}^{\mu\nu} \equiv k_{\pm}^{\mu} \, p_{\tau^{\pm}}^{\nu} - k_{\pm}^{\nu} \, p_{\tau^{\pm}}^{\mu} = -F_{\pm}^{\nu\mu}$$

• We can calculate

$$\vec{B}_{\pm} = \vec{p}_{\tau^{\pm}} \times \vec{k}_{\pm} = \vec{v}_{\tau^{\pm}} \times \vec{E}_{\pm}$$

- Specialize to Higgs rest frame (back-to-back taus)
 - E_+B_+ and E_-B_- planes are parallel
 - Motivate a new acoplanarity
 between E₊v₊ and E₋v₋ planes

$$\Theta = \operatorname{sgn} \left[\vec{v}_{\tau^+} \cdot (\vec{E}_- \times \vec{E}_+) \right] \operatorname{Arccos} \left[\frac{\vec{E}_+ \cdot \vec{E}_-}{|\vec{E}_+| |\vec{E}_-|} \right]$$
$$P_{\Delta, S} = -2 e^{i(2\Delta - \Theta)} \left| \vec{E}_+ \right| \left| \vec{E}_- \right|$$

$$\Theta = \operatorname{sgn} \left[\vec{v}_{\tau^+} \cdot (\vec{E}_- \times \vec{E}_+) \right] \operatorname{Arccos} \left[\frac{\vec{E}_+ \cdot \vec{E}_-}{|\vec{E}_+| |\vec{E}_-|} \right]$$
$$P_{\Delta, S} = -2 e^{i(2\Delta - \Theta)} |\vec{E}_+| |\vec{E}_-|$$

- In the Higgs rest frame, the "electric" components are $\vec{E}_{\pm} = \frac{m_h}{2} \left[(y_{\pm} - r) \vec{p}_{\pi^{\pm}} \Big|_0 - (y_{\pm} + r) \vec{p}_{\pi^{0\pm}} \Big|_0 \right]^{\perp}$ $|_0$ = tau rest frame
- If neutrinos were measured, we would have complete information to reconstruct tau momentum, tau and Higgs rest frames

$$y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau^{\pm}}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau^{\pm}}}{p_{\rho^{\pm}} \cdot p_{\tau^{\pm}}}$$
$$r \equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m_{\tau}^2 + m_{\rho}^2} \approx 0.14 \,.$$

Ideal situation

Ideal – compare $\rho^+\rho^-$ acoplanarity^{*}

Lepton collider possibilities

- We obviously cannot directly measure neutrino momenta
- At a lepton collider, have enough constraints to solve algebraically for neutrino momenta
 - Have two neutrino momenta solution sets
 - Necessarily require visible Z decay
 - Both solutions give correct Higgs mass
 - Weight each solution by half an event

Lepton collider – reconstructed

Lepton collider – reconstructed

Lepton collider possibilities

- For Vs = 250 GeV ILC, polarized beams, Zh production is about 0.30 pb
- Signal yield (using SM Higgs to taus decay width and restricting to visible Z decays) is 990 events with 1
 ab⁻¹ luminosity

$\sigma_{e^+e^- \to hZ}$	0.30 pb
$\operatorname{Br}(h \to \tau^+ \tau^-)$	6.1%
$Br(\tau^- \to \pi^- \pi^0 \nu)$	26%
$\operatorname{Br}(Z \to \operatorname{visibles})$	80%
N_{events}	990

ILC TDR Volume 2

Lepton collider possibilities

- For Vs = 250 GeV ILC, polarized beams, Zh production is about 0.30 pb
 - Signal yield (using SM Higgs to taus decay width and restricting to visible Z decays) is 990 events with 1 ab⁻¹
 - Construct binned likelihood using a sinuisoidal fit to signal, determine sensitivity by variation of test Δ
- With 1 ab^{-1} of ILC $\sqrt{s}=250$ GeV, expect 1σ discrimination of 4.4° (compared* to 6° using ϕ^* [albeit included backgrounds and detector effects])

$$L = \frac{\prod_{i=1}^{N} \operatorname{Pois} \left(B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=\delta} \right)}{\prod_{i=1}^{N} \operatorname{Pois} \left(B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=0} \right)}$$

LHC prospects

- Can also study this phase at the LHC
 - Consider h+j events (can also consider VBF production)
 - Will use collinear approximation for neutrino momenta
 - In this approximation, Θ is identical to φ^*
 - First proposal to measure Δ at the LHC with prompt tau decays and kinematics

LHC prospects

Signal and background generation

- Use MadGraph5 for h+j and Z+j events at LHC14
 - Mimic cuts for 1-jet, hadronic taus Higgs search category
 - Impose preselection of $p_T(j) > 140$ GeV, $|\eta(j)| < 2.5$
 - Normalize to MCFM NLO $\sigma(h+j)=2.0 \text{ pb}, \sigma(Z+j)=420 \text{ pb}$
 - No pileup or detector simulation, aside from tau-tagging efficiencies
 - Pileup degrades primary vertex determination for charged pion tracks and adds ECAL deposits that reduce neutral pion resolution
 - Tracking and detector resolution will clearly smear the Θ distribution

Yields for 3 ab⁻¹ LHC

- Signal region: MET > 40 GeV, p_T(ρ) > 45 GeV, |η(ρ)|
 < 2.1, m_{coll} > 120 GeV
 - Inject an additional 10% contribution to (flat) Zj
 background to account for QCD multijets

	hj	Z j
Inclusive σ	$2.0~{ m pb}$	420 pb
$Br(\tau^+\tau^- decay)$	6.1%	3.4%
$Br(\tau^- \to \pi^- \pi^0 \nu)$	26%	26%
Cut efficiency	18%	0.24%
N_{events}	1100	1800

Yields for 3 ab⁻¹ LHC

 Consider τ tagging efficiency benchmarks of 50% and 70%, use similar likelihood analysis as before

τ_h efficiency	50%	70%
3σ	$L = 550 \text{ fb}^{-1}$	$L = 300 {\rm ~fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°

- Discriminating pure scalar vs. pure pseudoscalar at 3σ requires 550 (300) fb⁻¹ with 50% (70%) τ tagging efficiency
- For 5σ, require 1500 (700) fb⁻¹ with 50% (70%) τ tagging efficiency
- Again, detector effects and pileup are neglected 36

Improving the measurement of the tau

- Yukawa CP phase
- Consider including MET information for LHC analyses
 - *e.g.* MELA-type likelihood incorporating signal hypotheses with different Δ
- Consider other tau decay modes
- Improve tau tagging efficiency
- Add decay vertex information
- Consider VBF production

Summary

- New CP phases are motivated from general baryogenesis arguments
- Have a new suite of measurements to perform in Higgs physics
 - Fermionic CP phases play a special role
 - Look forward to discussion with experimentalists to implement this analysis in future Higgs studies

$\sigma_{e^+e^- \rightarrow hZ}$	0.30 pb
$\operatorname{Br}(h \to \tau^+ \tau^-)$	6.1%
$Br(\tau^- \to \pi^- \pi^0 \nu)$	26%
$Br(Z \rightarrow visibles)$	80%
N_{events}	990
Accuracy	4.4°

LHC, 14 TeV	
50%	70%
$L = 550 \ \mathrm{fb}^{-1}$	$L = 300 {\rm fb}^{-1}$
$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
11.5°	8.0°
	LHC, 14 TeV 50% $L = 550 \text{ fb}^{-1}$ $L = 1500 \text{ fb}^{-1}$ 11.5°

38

UV completion

$$\mathcal{L}_{\text{tree}} = \mathcal{L}_{\text{SM}-y_{\tau}} + |D\Phi|^2 - m_{\Phi}^2 |\Phi|^2 - \lambda_{\Phi} |\Phi|^4$$

$$- (yH\ell_{3\text{L}}^{\dagger}\tau_{\text{R}} + y'\Phi\ell_{3\text{L}}^{\dagger}\tau_{\text{R}} + \lambda'(\Phi^{\dagger}H)|H|^2 + \text{c.c.}), \qquad (A1)$$

$$\mathcal{L}_{\text{dim-6}} = \frac{|\lambda'|^2}{m_{\Phi}^2} |H|^6 + \left(\frac{\lambda' y'}{m_{\Phi}^2} |H|^2 H \ell_{3\text{L}}^{\dagger} \tau_{\text{R}} + \text{c.c.}\right).$$

Tau measurement details

Table 1. Branching fractions of the dominant hadronic decays of the τ lepton and the symbol and mass of any intermediate resonance [9]. The *h* stands for both π and *K*, but in this analysis the π mass is assigned to all charged particles. The table is symmetric under charge conjugation.

Decay mode	Resonance	Mass (MeV/ c^2)	Branching fraction (%)
$ au^- ightarrow h^- u_ au$			11.6%
$ au^- ightarrow h^- \pi^0 u_ au$	$ ho^-$	770	26.0%
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	a_1^-	1200	9.5%
$\tau^- ightarrow h^- h^+ h^- v_{ au}$	a_1^-	1200	9.8%
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$			4.8%

CMS JINST 7, P01001 (2012) [arXiv:1109.6034 [physics.ins-det]]

Tau measurement details

Tau measurement details

Table 4. The MC predicted τ_h misidentification rates and the measured data-to-MC ratios, integrated over the p_T and η phase space typical for the $Z \rightarrow \tau \tau$ analysis.

Algorithm	QCD		QCDµ		W + jets	
	MC (%)	Data/MC	MC (%)	Data/MC	MC (%)	Data/MC
HPS "loose"	1.0	1.00 ± 0.04	1.0	1.07 ± 0.01	1.5	0.99 ± 0.04
HPS "medium"	0.4	1.02 ± 0.06	0.4	1.05 ± 0.02	0.6	1.04 ± 0.06
HPS "tight"	0.2	0.94 ± 0.09	0.2	1.06 ± 0.02	0.3	1.08 ± 0.09
TaNC "loose"	2.1	1.05 ± 0.04	1.9	1.12 ± 0.01	3.0	1.02 ± 0.05
TaNC "medium"	1.3	1.05 ± 0.05	0.9	1.08 ± 0.02	1.6	0.98 ± 0.07
TaNC "tight"	0.5	0.98 ± 0.07	0.4	1.06 ± 0.02	0.8	0.95 ± 0.09