INCLUSIVE SEARCH STRATEGIES WITH A LEPTON AND MANY JETS

NATALIA TORO

arXiv: <u>1107.5055</u> (with Mariangela Lisanti, Matthew Strassler, Philip Schuster)

W+MULTI-JETS Measurements

Raw W rate as a function of exclusive jet multiplicity (e channel)

Inclusive, unfolded and corrected $W+ \ge n$ jets rate (e channel)

Last public results (ATLAS and CMS) at **36 pb⁻¹** Hard to go past 4-jet: dominated by top+jets

W+MULTI-JETS SEARCHES?

Raw W rate as a function of exclusive jet multiplicity (e channel)

Interesting new-physics search region? $W+ \ge 6$ jets and high S_T

 $S_T = \sum E_T + \not\!\!E_T$

leptons & jets

Last public results (ATLAS and CMS) at **36 pb⁻¹** Hard to go past 4-jet: dominated by top+jets

(WHEN IS A SEARCH INTERESTING?)

Interesting region to think about?

- Sensitive to some *plausible* new physics
- Significant mass coverage
- Complementary to existing search program

But does it motivate a dedicated search?

- Not "trivial" (i.e. not excluded by control regions for other searches)
- If there's a signal, can one hope to convincingly demonstrate it?

SCORECARD FOR W+MANY-JET + HIGH S_T

- 1. Motivations & reach in exotic SUSY SM
 - More generally, what kinds of signals would show up in this signature?
- 2. (Non)-redundancy with other searches or control regions
- 3. Distinguishing a signal from backgrounds

SUSY LIMITS (1 FB⁻¹)

In several SUSY scenarios, squarks and gluinos below a TeV have been excluded:

...does this mean SUSY is dead?

HIDING PLACES

[Matt Strassler's slide – very common classification]

I will suggest the following way of thinking

- There are roughly three classes of things that can go wrong:
 - <u>Gluino</u> or roughly-degenerate squarks of moderate-to-high mass decaying simply to LSP easily seen in jets + MET
- Squeezed spectrum:

the gap between colored and uncolored is smaller

• Stretched spectrum:

all or most colored particles are too heavy to produce, color-neutral particles have higher cross-sections

• Busy spectrum:

MET (perhaps jets too) broken down into more objects, possibly soft

SQUEEZED SUSY LIMITS (1 FB⁻¹)

Direct decay limits from 0-lepton+jets+MET

Cascade decay limits from 1-lepton searches

SQUEEZED SUSY LIMITS (1 FB⁻¹)

Direct decay limits from 0-lepton+jets+MET

★ 500 GeV gluinos allowed!

Cascade decay limits from 1-lepton searches

SQUEEZED SUSY LIMITS (1 FB⁻¹)

Direct decay limits from 0-lepton+jets+MET

can see weakening of sensitivity
from cascade decays ("busy")
→ extreme case: "stealthy")

Cascade decay limits from 1-lepton searches

WHERE ELSE SHOULD WE LOOK?

Produce jets because they're strongly coupled (well established) Produce missing energy because there's nothing for LSP to decay to (just a guess, motivated by dark matter & minimality)

WHERE ELSE SHOULD WE LOOK?

Many scenarios with LSP decay:

- low-scale gauge mediation
- light hidden sectors
- hidden valleys at 10-100 GeV
 stealth SUSY

– NMSSM

 R-parity violation or anomalous T-parity

- → decay to gravitino + gauge/higgs bosons
- → decay to collimated "lepton-jets"
- → multi-jet or multi-track (can be complex)
 → dijet + very low MET
- → decay to higgs-like scalars
- \rightarrow decay to leptons or jets

Top-rich decays can also reduce typical LSP momentum and typical jet energy

These decays reduce or eliminate stable neutralino's \not{E}_T signal \Rightarrow require **complementary** searches.

AN EXAMPLE: 3 SUSY MODELS

W+MULTI-JETS Measurements

Raw W and Z rates as a function of exclusive jet multiplicity (e and μ channels)

W+MULTI-JETS Measurements

Raw W and Z rates as a function of exclusive jet multiplicity (e and μ channels)

be MC-based!

THE 3 MODELS IN LEPTON +MULTI-JET FINAL STATES

A vanilla CMSSM-like spectrum with stable bino-like LSP or bino \rightarrow singlet + singlino $\rightarrow b \sim b$ or bino $\rightarrow 3$ jets (RPV)

of 30-GeV jets (require *p*_T(*l*)>20 GeV, m_T>20 GeV)

High jet multiplicity increases S/B, but still small...

THE 3 MODELS IN LEPTON +MULTI-JET FINAL STATES

A vanilla CMSSM-like spectrum with stable bino-like LSP or bino \rightarrow singlet + singlino \rightarrow b \sim b

or bino \rightarrow 3 jets (RPV)

$$S_T = \sum_{T} E_T + \not\!\!E_T$$

in lepton+6 jet events

e.g. cut at 1 TeV S_T: 5-8 events over background of 2

SENSITIVITY SURVIVES WITH 1 FB⁻¹

(1 fb⁻¹ distributions for a higher-mass benchmark point)

New exclusion coverage from lepton+many-jets (optimistic estimate: stat. only errors)

New exclusion coverage from lepton+many-jets (optimistic estimate: stat. only errors)

Where applicable, comparable mass-scale sensitivity to jets+MET

Significant potential sensitivity to:

- SUSY with long cascade-decays
 - RPV, singlino cascades, GMSB with NLSP \rightarrow h/Z
- Any theory with exotic SU(3)-octet or sextet decaying into top quarks + visible

Limited sensitivity (reliant on background predictions):

• t' quarks or, more generally, a single SU(3)-triplet fermion

 $- d\sigma/dS_T$ comparable for t and t' \Rightarrow S/B ~ 1

• direct stop production (S/B < 1)

SCORECARD FOR W+MANY-JET + HIGH S_T

- 1. Motivations & reach in exotic SUSY SM
 - More generally, what kinds of signals would show up in this signature?
- 2. (Non)-redundancy with other searches or control regions
- 3. Distinguishing a signal from backgrounds

WOULDN'T WE HAVE NOTICED IT ALREADY?

- High S_T, high N_{jet} searches (black holes)
- Lower-MET SUSY searches
 - − ≥6-8 jets +MET SUSY searches
 - same-sign & trilepton searches
- Control regions
 - SUSY searches (low MET regions)
 - exotica/higgs (high N_{jet} controls)

BLACK-HOLE SEARCHES

Present searches cut too hard on S_T for perturbative physics *In principle* much harder search: 300x bigger background! ⇒ dwarfs *any* BSM search

MANY-JETS+MET

Signal region	7]55	8j55	6j80	7]80	
Jet p_T	$> 55 \mathrm{GeV}$		> 80 GeV		
Jet $ \eta $	< 2.8				
ΔR_{jj}	> 0.6 for any pair of jets				
Number of jets	≥ 7	≥8	≥ 6	≥ 7	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}}$	$> 3.5 { m GeV}^{1/2}$				

 $H_{\rm T} \ge 400 \; (\sim 800)$ $\Rightarrow \rm{MET} > 100$

Bkg ~ 40 events at 1 fb⁻¹

might be competitive for signals with low but nonzero MET

MANY-JETS+MET - CONTROL REGIONS -

Include regions of interest $(20 < m_T/GeV < 100)$,

but need to look at S_T distribution after high N_{jets} cut to derive constraints

Have right distributions been looked at?

Signal region	7j55	<mark>8j55</mark>	6j80	7j80	
Jet p_T	$> 55 \mathrm{GeV}$		> 80 GeV		
Jet $ \eta $	< 2.8				
ΔR_{jj}	> 0.6 for any pair of jets				
Number of jets	≥ 7	≥8	≥ 6	≥ 7	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}}$	$> 3.5 { m GeV}^{1/2}$				

WOULD YOU HAVE NOTICED IT ALREADY?

- High S_T, high N_{jet} searches (black holes)
 - No: background too big
- ≥6-8 jets +MET SUSY searches
- trilepton searches (low MET cuts)
 - Model-dependent (just like relative strength of different SUSY searches)
- Control regions for SUSY/Exotica searches
 - No obvious constraints: signals are ≥ two cuts removed from public plots
 - Examples welcome!

SCORECARD FOR W+MANY-JET + HIGH S_T

- 1. Motivations & reach in exotic SUSY SM
 - More generally, what kinds of signals would show up in this signature?
- 2. (Non)-redundancy with other searches or control regions
- 3. Distinguishing a signal from backgrounds

Is there hope for reliably calculating or measuring the background from tt+*n* jets?

measurements and theory are both less advanced than for W/Z+n jets

But meets base requirements for data-driven method:

lepton+4,5-jet data is already top-dominated (but caution: different PDFs)

Does a data-driven method work?

S_T distribution in $1+ \ge 6j$ events, (weighted down) 4+5j events

similar approach used in ATLAS ≥6-8j + MET searches

S_T distribution in $1 + \ge 6j$ events, (weighted down) 4 + 5j events

similar approach used in ATLAS ≥6-8j + MET searches

Tail is ok, but S_T threshold is too correlated with no. of jets

More phase space at low S_T for 4 jets than for 6 jets!

S_T distribution in $l + \ge 6j$ events, (weighted down) 4+5j events

similar approach used in ATLAS ≥6-8j + MET searches

Tail is ok, but S_T threshold is too correlated with no. of jets

More phase space at low S_T for 4 jets than for 6 jets!

Simple event-by-event weighting of lower n-jet events: imagine "splitting" any jet in 5j event in two jets of energy $E \cdot z$ and E(1-z) – weight each event by the fraction of z's such that $E \cdot z > 30$ GeV and E(1-z) > 30 GeV.

 S_T distribution in $l+ \ge 6j$ events, (weighted down) 4+5j events splitting-weighted 5j events

 S_T distribution in $l+ \ge 6j$ events, (weighted down) 4+5j events splitting-weighted 5j events

Caveats:

works pretty well for =6jets, but must extend for >6jets

improvable by accounting for z-dependence of splitting fns?

"splitting" picture isn't physical for many events (6th jet is ISR) ⇒ just a device for capturing phase-space

different PDFs? (at LO with S_T>TeV, not by much...)

Other cross-checks and handles:

- Signal falls slower than bkg at high N_{jet}
- jet η distribution: more central for hard NP than for top+jets
- Potential for non-SM-like lepton sign asymmetry, b-tag distributions
- Background is known physics: angular distributions should look "top-like"

CONCLUSION

- Estimated potential for searches in events with one lepton & many jets
- Motivated:
 - SUSY with exotic cascades (R-parity violation, gauge mediation, singlet/singlino, ...) can swallow MET
 - In same net, capture any model with strong production & decay to tops (or many gauge bosons?)
- The search is not redundant there could be new physics here!
- Data-driven methods & cross-checks exist to help distinguish signal from background

CONCLUSION

- Estimated potential for searches in events with one lepton & many jets
- Motivated:
 - SUSY with exotic cascades (R-parity violation, gauge mediation, singlet/singlino, ...) can swallow MET
 - In same net, capture any model with large strong production & decay to tops (or many gauge bosons?)
- The search is not redundant there could be new physics here!
- Data-driven methods & cross-checks exist to help distinguish signal from background

EPILOGUE (OTHER CHANNELS)

Inclusive many jets
 Moderate MET + many jets
 1 lepton + many jets [this talk]
 dilepton + many jets?

Extending the search program for "busy" new physics

of 25 GeV jets after metrel cut (ATLAS h→WW 1.7 fb⁻¹)

Again, seems like fertile ground