Higgs Cross Sections

S. Dawson, BNL Triumf December, 2011

What's it all mean?

1

Questions to my experimental friends

- If the Higgs indications are real, where will you be next summer?
- What do you need us (theorists) to calculate?
 - Is Higgs cross section working group still relevant?
 Or are the challenges experimental?
 - Do you need backgrounds (ZZ?) to higher order?These are a lot of theory work!
 - What kind of model building is useful?Are there still missing signatures?
 - Can we be cleverer at the way we think about studying Higgs properties?

Who Needs a Higgs Boson?

□ To give mass to W/Z and fermions
 ■ W mass is predicted in terms of G_F, α, M_Z
 ■ Fermion masses are free parameters
 □ To unitarize vector boson scattering
 ■ VV→VV grows with energy unless M_H<700 GeV
 ■ Theory is strongly interacting at TeV scale without Higgs Boson

We expect something "Higgs-like"

What unitarizes WW scattering?

Symmetry breaking could be weakly coupled
 SUSY (and beyond MSSM), Higgs Portal (lots of singlets), Extra-D with multiple vector bosons.....

- Symmetry breaking could be strongly coupled
 - Technicolor, QCD like models, Higgsless, composite Higgs.....

Higgs Boson

Standard Model Higgs expected to be light

□ This assumes the Standard Model!

 $\Delta\chi^2$ =4 gives 95% confidence level limit

M_W versus m_t

Masses inferred 80.55 from precision M_w (GeV) 80.5 measurements 80.45 1o band for M_w WA and Higgs 80.4 searches* 68%, 95%, 99% CL fit 80.35 Masses inferred 80.3 from precision 80.25 measurements 80.2

SM Predictions

Higgs boson wants to be light

80.15 ⊾ 140

G fitter SM

contours excl. M., m

150

160

170

180

68%, 95%, 99% CL fit contours

excl. Mw, m, incl. Higgs searches

m_t (GeV)

190

1 band for m top WA

S. Dawson * Includes LHC searches

200

Higgs Limits

□ From Gfitter (2011)

- If you don't include direct search limits for Higgs, 95% CL upper bound: M_H < 169 GeV</p>
- If you include LEP, Tevatron, LHC limits, 95% CL upper bound: M_H < 143 GeV</p>
 - Test of consistency of Standard Model

Not hard to fit bounds with new physics

http://gfitter.desy.de/

Higgs at the LHC

S. Dawson

Standard Model Higgs

SM fermion couplings to Higgs are fixed

$$L_{Y} = -m_{f} \left(\overline{\Psi}_{L} \Psi_{R} + \overline{\Psi}_{R} \Psi_{L} \right) \left(1 + \frac{H}{v} \right)$$

b-loop contributes ~2-5%

Extremely sensitive to BSM Physics

Many models can have a heavy Higgs Boson

SM 4th generation almost gone

Many Models can have a Heavy Higgs Boson

Universal extra dimension models can have a heavy Higgs boson

- Models have heavy copies of top quark, T_n
- Higgs couplings of $T_n \sim (m_t/v)(m_t/M_{Tn})$
- Gluon fusion Higgs cross section enhanced

[Matchev, Petriello]¹

Many Possibilities: Fermiophobic Higgs

- Higgs produced from VBF, VH
- Branching ratio to vector bosons much larger than SM

Fermiophobic Limits

In γγ mode, CMS excludes fermiophobic Higgs with M_H<112 GeV</p>

Of course, rate can be suppressed

Little Higgs like models

- Higgs is Goldstone Boson of broken global symmetry
- Top quark has a weak singlet partner which mixes with top
- Higgs production can be significantly suppressed

Note decoupling for large f

f_{min} is minimum scale allowed by precision EW (500 -1200 GeV)

Higgs Cross Section is window to BSM

- Gluon fusion to NNLO for models with new fermions
 - If fermions mix with top, rate tends to be suppressed by ~ 20% [Composite Higgs models, Little Higgs]
- New channels in MSSM (and others)
- Hard to quantify this kind of uncertainty

Largest uncertainty in Higgs cross sections is unknown BSM physics

See Y. Bai talk

[Furlan]

SM Higgs Theory is predictive

Branching ratios known in SM

Branching Ratio Uncertainties are Small

- □ Largest uncertainty is on H→bb of O(3-4%) coming from uncertainty on m_b
- Other uncertainties on BRs are O(1%)
 - (Except H→tt)
- □ Use HIGLU plus Prophecy4f (includes $H \rightarrow V^*V^* \rightarrow 4f$)
 - Off-shell effects matter near WW, ZZ thresholds

Higgs Theory is predictive

S. Dawson

Where do uncertainties come from?

- Unknown higher order terms (TH)
- □ Scale dependence (TH)
- **D** PDFs/ α_s (TH + EXP)
- **Other parameters:** m_b , (TH+EXP)
- Effects of cuts (TH + EXP)
 - Do cuts script the result?
- BSM effects (TH)

$$\boldsymbol{\sigma} = \sum_{ij} f_i(x_1) f_j(x_2) \hat{\boldsymbol{\sigma}}_{ij}(\hat{s}, \boldsymbol{\alpha}_k, \boldsymbol{M}_n, cuts....)$$

SM calculations in great shape

 \Box Dominant production mode is gg \rightarrow H

- NNLO in heavy M_{top} limit (checked in M_H/M_{top} expansion)
- Exact t,b loops at NLO
- N³LL resummation
- EW and mixed EW/QCD corrections

Precise predictions allow us to trust error estimates

Radiative Corrections are Large

[Anastasiou, Moriond 2011]

S. Dawson

What do we mean by NNLO?

- □ It is computed in limit $M_{\rm H}^2/4M_t^2 \rightarrow 0$
- How can this work for heavy Higgs?
 - Can analytically check approximation at NLO
 - At NNLO can compute corrections in low x limit, $x=M_{H}^{2}/s$
 - They look big, but after weighting by PDFs give 2% effect to hadronic cross section

At NLO, 5% accuracy at M_H =1 TeV

S. Dawson [Caola, Forte, Marzani, Harlander, Pak, Steinhauser, Ozeren]

The Role of b-loops

□K factor for b loops smaller than for top loops

□Known "only" at NLO

[Anastasiou, Buehler, Herzog, Lazopoulos]

Electroweak Contributions

Enhanced by N_{If}, No Yukawa suppression

$$C_{1} = 1 + \alpha_{S}C_{a} + \alpha_{S}^{2}C_{b} + \delta_{EW}\left(1 + \alpha_{S}C_{a,EW} + \alpha_{S}^{2}C_{b,EW}\right)$$

Do EW terms factor? $C_1 = (1 + \delta_{EW})(1 + \alpha_s C_a + \alpha_s^2 C_b)$

Small scale gives better convergence

□ Taking $\mu_0 = M_H/2$ minimizes effect of logs

 \Box Increases cross section by about 10% from $\mu_0 = M_H$

Scale uncertainty for $gg \rightarrow H$

- □ Scale uncertainty O(6-8%) for $M_H \sim 100-300$ GeV
- Slightly different approaches
 - ABPS
 - □ Exact NLO/NNLO in large Mt limit
- No resummation ggs XS WG 2010 $[dd] (H \leftrightarrow dd)$ ∖s=7 TeV EFT estimate of EW/QCD 10 E dFG NNLO for large M_t+NNLL Exact t/b to NLO de Florian and Grazzini Exact EW Anastasiou, Boughezal, Petriello and Stoeckli Online calculator: 500 550 600 150 200 250 300 350 400 450 M_u [GeV] http://theory.fi.infn.it/grazzini/hcalculators.html

PDF Uncertainties

- Experimental uncertainty
 - Choice of data sets
 - Statistical treatment of errors
 - \blacksquare α_s (correlated with PDFs)
 - □ PDFs have different central values
- Theory uncertainty
 - Parametrization of PDFs
 - Only ABKW, HERAPDF, MSTW at NNLO
 - CTEQ NNLO PDFs not public, but soon....

Each PDF has different central α_s

\square α_s enters PDF evolution and cross section

NNLO PDF sets tend to have smaller α_s (ABKM: $\alpha_s = .1147$)

 \rightarrow ABKM gives 20% smaller σ

 \rightarrow Djouadi suggests larger uncertainty

 \rightarrow Need PDFs which include Tevatron di-jet data for gluons at high x

PDF differences

 \Box Differences not entirely due to α_s

Even when evaluated at the same α_s , PDF sets give predictions which differ by more than purported PDF error

PDF4LHC Recipe for NLO

- Calculate PDF+α_s uncertainties from CTEQ, MSTW, NNPDF PDF sets at 68% confidence level
- Use envelope m1.15 PDF4LHC recipe LHC'7 TeV PDF+α_s 68% C.L. ••••• NNPDF2.0 1.1-normalized to MSTW2008nlo CTEQ6.6 MSTW08nlo 1.05 0.95 0.9 different values of $\alpha_s(m_z)$ exact PDF+ α_s uncertainties 0.85 100 150 200 250 300 350 400 450 500 M_H [GeV]

PDF4LHC

At NNLO use MSTW rescaled by NLO uncertainty

Roughly amounts to doubling MSTW NNLO errors

Note larger PDF + α_s errors at Tevatron

The Bottom Line

- D PDF + α_s , other parametric uncertainties, added in quadrature
 - Gaussian distribution
- □ Scale, theory uncertainties ~ not statistical
 - Flat distribution
- Add scale uncertainties + parametric uncertainties linearly (Higgs Xsection WG prescription)
- □ gg \rightarrow H, M_H=120 GeV, (+20%, -15%) uncertainty at 7 TeV
 - Scale & PDF/ α_s uncertainties roughly equal

$gg \rightarrow H$

Fully differential NNLO rates

K factor isn't a constant

S. Dawson [Anastasiou, Melnikov, Petriello; Catani, Grazzini]

Compare theory/experiment

Experiments separate Higgs rate into 0, 1, 2 jet bins
Theory precision degrades from 0 to 1 to 2 jet bins

Higgs @ LHC

 $gg \rightarrow H \rightarrow WW^*$ \Box Tevatron looks for Iv Iv + 0, 1, 2 jets \Box Uncertainties vary by bin: M_H~160 GeV $\sigma_{gg \to H} = \sigma_{gg \to H}^{0 jets} + \sigma_{gg \to H}^{1 jets} + \sigma_{gg \to H}^{2 jets}$ [60% 29% 11%] Correlated! NNLO NLO $| \mathbf{O} |$ Scale: (+5,-9%) (+24,-23%) (+91,-44%) Scale uncertainty depends on cuts [Anastasiou, Dissertori, Grazzini, Stockli 0905.3529]

Interface with NLO Monte Carlos

Only 2 public NLO MCs: POWHEG & MC@NLO

- Hardest jet with LO accuracy, other jets generated by shower in collinear/soft approximations
- MC@NLO tied to HERWIG
- POWHEG
 - Can switch shower models
 - No issues with improper cancellations of higher order effects
 - Automation: new processes should be faster
 - NEW: Exact quark mass effects at NLO

$gg \rightarrow H$ in MC@NLO & POWHEG

- Harder p_T spectrum in POWHEG than MC@NLO
 - (large) K factor multiplies all p_T in POWHEG, not in MC@NLO
- Dip in MC@NLO understood
 - Incomplete cancellation (NNLO effect)

Differences understood

[Nason, Oleari]

Finite Mass Effects at NLO in POWHEG

~10% effects

[Vicini]

The role of the b-quark

POWHEG with finite mass effects

[Vicini]

Vector Boson Fusion

- Discovery channel
 - 2nd largest cross section over entire M_H range
- □ VBF: $H \rightarrow \tau^+ \tau^-$ and $H \rightarrow WW$ give H couplings
- Probes new vector boson interactions

VBF with NLO QCD + EW

- Electroweak corrections to vector boson fusion are of similar size as QCD corrections (-4%, -7%)
- QCD contributions very sensitive to cuts
- Partial cancellation between EW & QCD

NLO distributions in VBFNLO and HAWK

VBF at (partial) NNLO

NNLO corrections in DIS approximation Prediction for total rate under excellent control

New modes in MSSM: bbH production

Treating b quarks inclusively leads to large collinear logarithms from integration over phase space

Expansion parameter becomes $\alpha_s \log(m_b/M_H)$

Absorb large logs into b PDFS

Relevant process is then $bg \rightarrow bH$ or $b\overline{b} \rightarrow H$

PDF Uncertainties on bH

Differences between PDF sets larger than proponents claims of PDF uncertainties

Needed: Scheme to combine best features of 4FNS and 5FNS

Theory error bands are scale/PDF uncertainties

Large effects from choice of SUSY parameters

Conclusions

Higgs Hunting in an exciting phase!

- Theory/experimental dialog critical
- Total cross section predictions under good control with theory uncertainty ~ 20% at LHC
- The hard part is understanding theory uncertainties for cuts/distributions
- Uncertainties for large p_T (boosted Higgs) still a work in progress
- BSM uncertainty