SUSY and BSM in ATLAS Recent Results and more selected topics only!!!

G. Azuelos

BSM

- narrow resonances:
 - dileptons
 - lepton +MET
 - dijets
 - diphotons
- heavy quarks
- Monojets
- Leptoquarks

Supersymmetry

- inclusive signals:
 - Jets + Etmiss
 - ... + 0, 1, 2 leptons
- multileptons
- stable hadronizing particles
- GMSB
 - displaced vertices
 - diphotons + MET

Introduction

Beyond the Standard Model

- o wide variety of models and signatures, with unknown parameters
 - exclude regions of parameter space
 - interpret a signature in terms of different models
- o narrow resonances relatively easy
 - knowledge of background less critical
- o non-resonant signals probe high mass phenomena
 - where the backgrounds are low and where backgrounds, reconstruction efficiencies are well understood

Supersymmetry

- very large parameter space \rightarrow initial study of simplest models
- o inclusive signals: excess in jets, Etmiss (and leptons)
- o R-parity violation
- o long-lived particles
- interpretation in terms mostly of SUGRA (5 parameters), but also GMSB, (AMSB)

Experimental Challenges

→ see talk by Michel Lefebvre

Impossible to discuss experimental methods in each case

Systematic errors:

- NLO, NNLO calculations, mass-dependent k-factors
- matching of matrix element and parton shower (for multijet processes)
- pdf, alpha_s, QCD scale factors
- QCD, W+jets have high cross sections → data driven techniques, with their uncertaintes
- lepton reconstruction efficiencies, isolation, resolution
- Good Runs Lists...
- pileup reweighting
- luminosity
- limit extraction procedure

Narrow Dilepton resonances

Sequential Standard Model

- o generic Z' with SM couplings to fermions but no coupling to gauge bosons
- o serves as a benchmark

□ E₆-inspired Z' (and other gauge symmetry extensions)

 $\stackrel{\circ}{\vdash} E_6 \to SO(10) + \frac{U(1)_{\psi}}{\downarrow} \\ \stackrel{\searrow}{\to} SU(5) + \frac{U(1)_{\chi}}{\chi}$

$$Z' = \cos \theta_{E6} \, Z'_{\chi} + \sin \theta_{E6} \, Z'_{\psi}$$

$$\theta_{E6} = \pi - \tan^{-1} \sqrt{5/3} \implies Z'_{\eta}$$

$$\theta_{E6} = \tan^{-1} \sqrt{3/5} \implies Z'_{I}$$

$$\theta_{E6} = \tan^{-1} \sqrt{15}/9 \implies Z'_{S}$$

$$\theta_{E6} = \tan^{-1} \sqrt{15} \implies Z'_{N}$$

- **Graviton KK**
- technirho, techniomega
- □ Various other models....

 Z_{KK} , Z^* , 3-3-1, little Higgs Z_H , LRSM Stueckelberg Z', leptophobic or fermiophobic Z'

P. Langacker, Rev Mod Phys 81 (2009) 1199 arXiv:0801.1345v3

Resonant dileptons

Drell-Yan production well predicted

NNLO calculations available; used to derive mass-dependent derive k-factors

Other backgrounds estimated by data-driven method or by MC

- multijets: reverse isolation
- W+jets
- top pair
- dibosons

Background scaled to data in Z peak region uncertainties:

- k- factors, pdf's
- normalization
- trigger/reconstruction

Limits on dilepton resonances

95% CL limits	Model	e^+e^-	$\mu^+\mu^-$	$\ell^+\ell^-$
	$Z'_{\rm SSM}$	1.70(1.70)	1.61(1.61)	1.83(1.83)
	G^*	1.51(1.50)	1.45(1.44)	1.63(1.63)

	$E_6 Z'$ Models				F	RS Gr	avito	n		
Model/Coupling	Z'_{ψ}	$Z'_{\rm N}$	Z'_{η}	Z'_I	$Z'_{\rm S}$	Z'_{χ}	0.01	0.03	0.05	0.1
Mass limit [TeV]	1.49	1.52	1.54	1.56	1.60	1.64	0.71	1.03	1.33	1.63

14 Dec 2011

Contact Interactions

All quarks participate in contact interaction with the same strength.

Interference very important (dominant)

$$\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} - \eta_{LL} \frac{F_I(m_{\ell\ell})}{\Lambda^2} + \frac{F_C(m_{\ell\ell})}{\Lambda^4}$$

TABLE V. Expected and observed 95% CL lower limits on the contact interaction energy scale Λ for the electron and muon channels, as well as for the combination of those channels. Separate results are provided for the different choices of flat priors: $1/\Lambda^2$ and $1/\Lambda^4$.

Channel	Prior	Expected	limit (TeV)	Observed	l limit (TeV)
		Constr.	Destr.	Constr.	Destr.
e^+e^-	$1/\Lambda^2$	9.6	9.3	10.1	9.4
	$1/\Lambda^4$	8.9	8.6	9.2	8.6
$\mu^+\mu^-$	$1/\Lambda^2$	8.9	8.6	8.0	7.0
	$1/\Lambda^4$	8.3	7.9	7.6	6.7
Comb.	$1/\Lambda^2$	10.4	10.1	10.2	8.8
	$1/\Lambda^4$	9.6	9.4	9.4	8.4

Diphotons

- prompt photons (pythia, DIPHOX for NLO)
- fakes: γ + j, j j by choosing non-tight photons

k-factor	GRW	Hev	vett	HLZ				
Value		\mathbf{Pos}	Neg	n = 3	n = 4	n = 5	n = 6	n = 7
1	2.73	2.44	2.16	3.25	2.73	2.47	2.30	2.17
1.70	2.97	2.66	2.27	3.53	2.97	2.69	2.50	2.36

diphotons - Bounds on RS Graviton

k-Factor	Channel(s)	95% CL Limit [TeV]				
Value	Used	k/M_{Pl} Value				
value	Used	0.01	0.03	0.05	0.1	
1	$G ightarrow \gamma \gamma$	0.74	1.26	1.41	1.79	
1	$G ightarrow \gamma \gamma / ee/\mu \mu$	0.76	1.32	1.47	1.90	
1.75	$G ightarrow \gamma \gamma$	0.79	1.30	1.45	1.85	
1.75	$G ightarrow \gamma \gamma / ee/\mu \mu$	0.80	1.37	1.55	1.95	

W

14 Dec 20

eting, Vancouver

Data 2011

W'(500)

W'(1000)

W'(2000)

W

Z

ttbar

QCD

10³

Diboson

m_T [GeV]

dijet resonance search

$$f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x}$$

Various models

• excited quark q* (contact interaction) $q g \rightarrow q^* \Rightarrow$ compositeness scale $\Lambda \equiv m_{q^*}$

axigluon: axial coupling to quarks
$$\mathcal{L}_{Aq\bar{q}} = g_{\text{QCD}} \bar{q} A^a_{\mu} \frac{\lambda^a}{2} \gamma^{\mu} \gamma_5 q; \quad g_{\text{QCD}} = \sqrt{4\pi\alpha_s}$$
color-octet scalar
$$\mathcal{L}_{gg8} = g_{\text{QCD}} d^{\text{ABC}} \frac{\kappa_s}{\Lambda_s} S^A_8 F^B_{\mu\nu} F^{C,\mu\nu}$$

$$F_{\mu\nu}^{B}$$
 = gluon field strength tensor (color index A)

dijets

... more soon with higher luminosity

SM 4th family quarks

- allow the Higgs mass to be heavy (but now excluded...)
- cannot be too heavy without causing vacuum instability or violation of perturbative unitarity

Vector-Like Quarks coupling to light generations

vector-like quarks:

- both chiralities have the same transformation properties: singlets or doublets in SU(2)
- predicted by many models
 - E₆: down-type quarks
 - DEWSB: little Higgs, top condensation, beautiful mirrors, composite Higgs
 - extra dimensions, for even number of spatial dimensions
- EW constraints
 - expected generally to couple to 3rd generation because less contrained
 - in certain scenarios, mixings with SM quarks can cancel
 - → no EWPM constraint from first generations
 - → strong signal at LHC
- motivation
 - BSM models with custodial symmetry to protect Zbb (Agashe et al., Physics Letters B 641 (2006) 62-66)
 - extra dimension models
 - composite Higgs model (M Redi and A. Weiler, JHEP11 (2011) 108)

CMS has looked for T \rightarrow t Z in pair production (Z + 1 lepton): mT > 475 GeV if 100% BR arXiv:1109.4985 14 Dec 2011

vector-like quarks

 $\mathcal{L} = \frac{g}{\sqrt{2}} \Big(\kappa_{uD} W^{+}_{\mu} \bar{u}_{R} \gamma^{\mu} D_{R} + \kappa_{dU} W^{-}_{\mu} \bar{d}_{R} \gamma^{\mu} U_{R} \Big) + \frac{g}{2\cos\theta_{W}} \Big(\kappa_{uU} \bar{u}_{R} \gamma^{\mu} U_{R} + \kappa_{dD} \bar{d}_{R} \gamma^{\mu} D_{R} \Big)$ $\tilde{\kappa} = \frac{v}{M} \kappa \qquad (only RH \ coupling \ shown, \ for \ doublet \ vlq)$ single production more sensitive dominated by t-channel \rightarrow forward jet both \ charged \ and \ neutral \ current \ channels

vlq

Mass [GeV]	$CC \sigma \times BR [pb]$	NC $\sigma \times$ BR [pb]	$\tilde{\kappa}_{\mu D}^2$	$\tilde{\kappa}_{uU}^2$	$CC^- \sigma \times BR [pb]$
225	15	18	0.075	0.21	12
300	17	11	0.24	0.31	5.6
400	5.3	2.4	0.21	0.19	3.8
500	2.1	1.4	0.19	0.26	1.1
600	1.9	1.5	0.37	0.56	1.9
700	2.2	1.0	0.86	0.75	2.2
800	0.93	1.0	0.66	1.33	0.97
900	0.80	0.9	1.0	2.1	0.70
1000	0.91	1.1	1.9	4.0	0.50

constraints on coupling in degenerate bi-doublet model

Degenerate bidoublet:

(2,2) in
$$SU(2)_L \otimes SU(2)_R$$

hypercharges 1/6 and 7/6

$$\left(\begin{array}{c} \boldsymbol{X}_{5/3} \\ \boldsymbol{X'}_{2/3} \end{array}\right) \text{ and } \left(\begin{array}{c} \boldsymbol{U}_{2/3} \\ \boldsymbol{D}_{-1/3} \end{array}\right)$$

same Yukawa couplings to SM u quark.

Mixing of up with the two charge 2/3 quarks cancel exactly, leaving no observable correction to SM coupling

A. Atre et al., arXiv:1102.1987v1

Monojets

High pT Jet recoiling against an invisible particle such as

- graviton in ADD model of large extra dimensions
- Wimp pairs

3 regions selected: LowPT, HighPT, VeryHighPT

- pt(j1) > 120, 250, 350 GeV
- MET > 120, 220, 300 GeV
- pt(j2) < 30, 60, 60 GeV

Z+j, W+j are dominant backgrounds, but also QCD (data driven) and beam related background

limits on ADD

Limit on MD depends on the number of extra dimensions

Validity of the theory breaks when $\sqrt{s} \sim M_{D}$

- → truncate phase space for cross section evaluation
- → changes the limit by a few percent

Number of Extra Dimensions

Model-independent cross section limit (95% CL) 2.02 pb, 0.13 pb and 0.045 pb for the LowPt, HighPt and veryHighPt regions

monojets and dark matter

→ see seminar by W. Shepherd on Monday Assume effective interaction $qq\chi\chi$ due to exchange of heavy particle

- coupling can be scalar, vector, axialvector..., can involve gluons
- interpret the LHC limit in terms of WIMP cross section on nucleons
- very good sensitivity to spindependent interactions
- also to spin-independent interaction for low mass WIMP

scalar Leptoquarks

showing the 35pb-1 analysis New results coming out very soon...

clean, simple signal

pair production cross section is (almost) model-independent

$$\begin{array}{c|c} eejj \mbox{ and } \mu\mu jj & e\nu jj & \mu\nu jj \\ \hline M_{ll} > 120 \mbox{ GeV } & M_{\rm T} > 200 \mbox{ GeV } & M_{\rm T} > 160 \mbox{ GeV } \\ \hline M_{\rm LQ} > 150 \mbox{ GeV } & M_{\rm LQ} > 180 \mbox{ GeV } & M_{\rm LQ} > 150 \mbox{ GeV } \\ p_{\rm T}^{\rm all} > 30 \mbox{ GeV } & M_{\rm LQ}^{\rm T} > 180 \mbox{ GeV } & M_{\rm LQ}^{\rm T} > 150 \mbox{ GeV } \\ S_{\rm T}^{\ell} > 450 \mbox{ GeV } & S_{\rm T}^{\nu} > 410 \mbox{ GeV } & S_{\rm T}^{\nu} > 400 \mbox{ GeV } \end{array}$$

scalar Leptoquarks

Other interesting BSM topics...

Diboson resonances

- o Neutral resonances
 - Signals similar to Higgs, but could be vector or tensor

 $G^* \rightarrow ZZ \rightarrow 4\ell$ or $2\ell 2j$ or $2\ell + MET$

Z' or ρ_T or $G^* \to WW \to \ell \nu \ell \nu$ or $\ell \nu j j$

o Charged resonances

W' or ρ_T or $G^* \to WZ \to \ell \nu \ell \ell$ or $\ell \nu j j$ or $\ell \ell j j$

Results coming out soon...

Left-Right Symmetric model

o WR and heavy Majorana neutrino

 $q\bar{q} \rightarrow W_R \rightarrow lN$, with N decaying subsequently to $N \rightarrow lW_R^* \rightarrow ljj$

ATLAS-CONF-2011-115

strong gravity, black holes, ttbar charge asymmetry, many others ...

Summary Tables

		ATLAS Exotics	Searches* - 95%	CL Lower Limits (St	tatus: Dec. 2011)
				<u> </u>	
	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]		3.2 TeV M _D (δ=2)	
	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [Preliminary]		3.0 TeV M _S (GRW cut-	off) ATLAS
	UED : $\gamma\gamma + E_{T,\text{miss}}$	L=1.1 fb ⁻¹ (2011) [arXiv:1111.4116]	1.23 TeV	Compact. scale 1/R (SPS8	3) Preliminary
ions	RS with $k/M_{\text{Pl}} = 0.1$: $\gamma\gamma$, ee, $\mu\mu$ combined, $m_{\gamma\gamma,ll}$	L=1.1-2.1 fb ⁻¹ (2011) [Preliminary, arXiv:110	08.1582] 1.95	Graviton mass	f
isue	RS with <i>k</i> / <i>M</i> _{Pl} = 0.1 : ZZ resonance, <i>m</i> _{IIII}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-144]	575 Gev Graviton m	ass	$\int Ldt = (0.03 - 2.1) \text{fb}^{-1}$
lime	RS with $g_{qqgKK} / g_s = -0.20 : H_T + E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-123]	840 GeV KK gl	uon mass	s = 7 TeV
ra c	Quantum black hole (QBH) : m_{dijet} , $F(\chi)$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864]		3.67 TeV <i>M_D</i> (δ=6)	
LX L	<code>QBH</code> : High-mass σ_{t+X}	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070]	:	2.35 TeV M _D	
	ADD BH (M_{TH}/M_{D} =3) : multijet, Σp_{T} , N_{jets}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 TeV	<i>M</i> _D (δ=6)	
	ADD BH (M_{TH}/M_{D} =3) : SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ (2011) [arXiv:1111.0080]	1.25 TeV	M _D (δ=6)	
	ADD BH (M_{TH}/M_{D} =3) : leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147]	1.5 TeV	M _D (δ=6)	
~	qqqq contact interaction : $F_{\chi}(m_{ m dijet})$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864 (Bayesia	ın limit)]	6.7 TeV Λ	
0	qqll contact interaction : ee, $\mu\mu$ combined, m_{μ}	L=1.1-1.2 fb ⁻¹ (2011) [Preliminary]		10.2 TeV	Λ (constructive int.)
	SSM : m _{ee/µµ}	L=1.1-1.2 fb ⁻¹ (2011) [arXiv:1108.1582]	1.83	Tev Z' mass	
_	SSM : $m_{\mathrm{T,e}/\mu}$	L=1.0 fb ⁻¹ (2011) [arXiv:1108.1316]	2.	15 Tev W' mass	
3	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [Preliminary]	660 Gev 1 st gen. L	.Q mass	
1	Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu$ jj, $\mu\nu$ jj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481]	422 Gev 2 nd gen. LQ ma	ass	
en	4^{th} generation : coll. mass in $Q_{A}\overline{Q}_{4} \rightarrow WqWq$	L=37 pb ⁻¹ (2010) [CONF-2011-022] 270 Ge	🔽 Q ₄ mass		
th g	4^{th} generation : $d_{A} \overline{d}_{4} \rightarrow Wt Wt$ (2-lep SS)	L=34 pb ⁻¹ (2010) [1108.0366] 290 G	_{ie} v d ₄ mass		
-4-	$TT_{exo, 4th gen} \rightarrow t\bar{t} + A_0 A_0^2$: 1-lep + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.4725]	420 GeV T mass $(m(A_0)$	< 140 GeV)	
	Techni-hadrons : dilepton, m _{ee/μμ}	L=1.1-1.2 fb ⁻¹ (2011) [CONF-2011-125]	470 Gev ρ _T /ω _T mass (<i>i</i>	$m(\rho_{\rm T}/\omega_{\rm T}) - m(\pi_{\rm T}) = 100 {\rm GeV}$	∨)
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115]	780 Gev N mas	s (<i>m</i> (W _R) = 1 TeV)	
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115]	1.350 TeV	W _R mass (230 < m(N) < 7	700 GeV)
	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm} \rightarrow \mu\mu$)=1): $m_{\mu\mu}$ (like-sign)	L=1.6 fb ⁻¹ (2011) [CONF-2011-127] 3	75 Gev H ^{±±} mass		
ler	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ (2011) [Preliminary]		2.46 TeV q* mass	
OIL	Excited quarks : dijet resonance, m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311]		2.99 TeV q* mass	
	Axigluons : <i>m</i> _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311]		3.32 TeV Axigluon mas	S
	Color octet scalar : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311]	1.92	Tev Scalar resonance ma	ass
	Vector-like quark : CC, <i>m</i> _{lvq}	L=1.0 fb ⁻¹ (2011) [Preliminary]	900 GeV Q ma	ass (coupling $\kappa_{aQ} = v/m_{O}$)	
	Vector-like quark : NC, m _{llq}	L=1.0 fb ⁻¹ (2011) [Preliminary]	760 Gev Q mas	s (coupling $\kappa_{qQ} = v/m_{Q}$)	
		10 ⁻¹	1	1	0

*Only a selection of the available results leading to mass limits shown

Supersymmetry: jets, MET and leptons

Jets, MET and no lepton

 $E_T^{\text{miss}} > 130 \text{ GeV}$ $p_T(\text{jet1}) > 130 \text{ GeV}$ $p_T(\text{jet2+}) > 40 \text{ GeV}$ $m_{eff} > 1000 \text{ GeV}$

$$m_{eff} \equiv E_T^{\text{miss}} + \sum |p_T(\text{jets})|$$

high mass:

$$p_T(\text{jet2+}) > 80 \text{ GeV}$$

 $m_{eff} > 1100 \text{ GeV}$
signal:
 $m_0 = 660 \text{ GeV},$
 $m_{1/2} = 240 \text{ GeV},$
 $A_0 = 0, \tan \beta = 10, \ \mu > 0$

Jets + ETmiss

simplified model:

High Jet multiplicity + MET

6 or more jets

Signal region	7j55	8j55	6j80	7j80		
Jet p_T	> 55	GeV	> 80 GeV			
Jet η	< 2.8					
ΔR_{jj}	>0	> 0.6 for any pair of jets				
Number of jets	≥7	≥8	≥6	≥7		
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{T}}$	> 3.5 GeV ^{1/2}					

QCD background from control regions with fewer jets (MET/sqrt(H_T) ~ independent of number of jets)

additional model interpretation

UED

Similarity between SUSY and UED

- partner or KK state (but spin is different)
- conservation of R parity or KK state
- LSP or LKP escapes detection

UED characterized by compactification radius R and cut-off scale $\Lambda > R^{-1}$

$$m_{KK} = \sqrt{m_{SM}^2 + R^{-2}}$$

radiative correction ~ $ln(\Lambda R)$

Jets + Etmiss + 1 lepton

simplified model with 1-lepton

 $\tilde{q}
ightarrow q \, \tilde{\chi}_1^{\pm}
ightarrow q \, W^{(*)} \, \tilde{\chi}_1^0$ $rac{m_{ ilde{\chi}^{\pm}}^{}-m_{ ilde{\chi}^{0}}^{}}{m_{ ilde{g}}^{}-m_{ ilde{\chi}^{0}}^{}}$ x = $\tilde{g} \rightarrow q \bar{q} \, \tilde{\chi}_{1}^{\pm} \rightarrow q \bar{q} \, W^{(*)} \, \tilde{\chi}_{1}^{0}$ 800 800 m_{LsP} [GeV] m_{LsP} [GeV] Cross Section Excluded at 95% CL [pb] Cross Section Excluded at 95% CL [pb] 1-Step Decay, x=1/4 ATLAS 1-Step Decay, x=1/4 ATLAS ĝĝ→qqqqWW<u>x</u>,⁰, đđ→qqWW<u>⊼</u>⁰⊼⁰ 700 700 10² Combination Combination 600 600 Lint = 1.04 fb⁻¹, vs=7 TeV Lint = 1.04 fb⁻¹, vs=7 TeV Observed 95% CL 500 500⁻ Expected 10 10 Expected ±1 400E 400 300F 300 Ξ 200 200 100 100 10⁻¹ 10⁻¹ 0 0 300 300 400 500 600 700 800 400 500 600 700 800 m_{gluino} [GeV] m_{squark} [GeV] \boldsymbol{x} $\mathbf{\Delta}$

G. Azuelos -AtCan meeting, Vancouver

DIRECT GAUGINO PRODUCTION

- DG production via different modes:
 - C1N2 production has largest cross section
 - There are four possible final states we can look for a signal
 - Focus on one and optimize

Signal Region	#lept.	Signal	≥2 lepton signals
3-lepton	=3	(A0)	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow (l^+ l^- \tilde{\chi}_1^0) + (l^\pm v \tilde{\chi}_1^0)$
OSSF & jet-veto	=2	(A1)	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow (l_{rec}^+ l_{rec}^- \tilde{\chi}_1^0) + (l^{\pm} v \tilde{\chi}_1^0)$
SS & jet-veto	=2	(A2)	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} \rightarrow (l_{rec}^{+}l^{-}\tilde{\chi}_{1}^{0}) + (l_{rec}^{\pm}v\tilde{\chi}_{1}^{0})$
		(A3)	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow (l^+ l_{rec}^- \tilde{\chi}_1^0) + (l_{rec}^{\pm} v \tilde{\chi}_1^0)$
OSSF ≥2-jets & b-jet-veto	=2	(A4)	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} \rightarrow (ll\tilde{\chi}_{1}^{0}) + (q\overline{q}'\tilde{\chi}_{1}^{0})$

C. Clement transparency from Ryuichi Ueno, <u>https://indico.cern.ch/getFile.py/access?contribId=16&sessionId=3&resId=0&materialId=slides&confId=161358</u>

Jets + MET + 2 leptons

Limits obtained on production cross section for same-sign and for opposite sign lepton pairs

Figure 2: 95% CL cross section upper limits (CL_s) in pb and observed and expected limit contours for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production in direct gaugino simplified models.

GMSB interpretation – jets + MET + 2 leptons

Gauge Mediated Supersymmetry breaking parameters

A: SUSY breaking scale in separate sector $\ll M_{Planck}$

 $\tan \beta$: ratio of vevs

 M_{mess} : mass scale of messenger fields = 250 GeV~ weak scale

 N_5 : number of messenger fields = 5

 $sgn(\mu)$: sign of Higgsino mass term > 0

 C_{grav} : multiplicative factor of gravitino mass

exactly 2 leptons of opposite charge $m_{\ell\ell} > 12 \text{ GeV}$ $E_T^{\text{miss}} > 220 \text{ GeV}$ at least 3 jets with $p_{T1} > 80 \text{ GeV}$ and other $p_T(\text{jets}) > 40 \text{ GeV}$

multileptons

Showing the 35 pb-1 result. More recent result will be available soon...

- Low background
- CMS sees some excess (1106.0933) in 3 and 4-lepton channels

Selection

- at least 3 leptons
 - pT1, pT2 > 20 GeV, pT3>20(10) for e, μ
- at least 2 jets with pT > 50 GeV
- MET > 50 GeV
- Z veto
- low mass DY rejected (mll >20 GeV) for SFOS pairs

Multilep. events	All	eee	ееµ	еµµ	μμμ
tī	0.68±0.16	0.032±0.016	0.24±0.07	0.31±0.08	0.096±0.030
Z backgrounds	15.6±1.3	3.8±0.8	1.60±0.34	7.9±1.0	2.4±0.4
Other backgrounds	0.28±0.13	0.02±0.14	0.03±0.06	0.21±0.09	0.01±0.11
Total SM	16.6±1.3	3.8±0.8	1.9±0.4	8.4±1.0	2.5±0.4
Data	19	2	1	10	6

multileptons

b-jet + MET + 0I

large mixing with 3rd generation squarks $\tilde{b}_L - \tilde{b}_R$ or $\tilde{t}_L - \tilde{t}_R$ can result in low mass eigenstate

Scenarios:

1)
$$\tilde{g} \rightarrow \tilde{b}_1 b$$
 $m_{\tilde{\chi}_1^0} = 60 \text{ GeV}$
 $\downarrow b \tilde{\chi}_1^0$

2)
$$\tilde{g} \rightarrow b \overline{b} \, \tilde{\chi}_1^0$$
 (off-shell)

3) *SO*(10) – inspired:

 $\tilde{g} \rightarrow b\bar{b} \, \tilde{\chi}_1^0$ and $\tilde{g} \rightarrow b\bar{b} \, \tilde{\chi}_2^0$ are dominant (D-term and Higgs splitting models)

b-jet + MET + 0I

b-jet + MET + 1 lepton

Displaced vertices: R-Parity Violation

diphotons + MET

One of the first ATLAS papers, where signal was interpreted in terms of UED

2 tight isolated photons with $E_T > 25$ GeV and MET > 125 GeV

5 events found, 4.1 expected

Here, 3 scenarios:

```
GGM: Generalized GMSB
```

```
If NLSP is bino, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}
```

```
Minimal GMSB: SPS8
```

Heavy squarks and gluinos Λ : only free parameter $M_{mess} = 2\Lambda; N_5 = 1; \tan \beta = 15; \mu > 0$

Universal Extra Dimensions

GGM

SPS8 and UED

Summary Table - SUSY

Mass scale [TeV]

27 August 2011 Last updated at 02:41 ET

LHC results put supersymmetry theory 'on the spot'

By Pallab Ghosh Science correspondent, BBC News

Minimal Flavour Violation: 13 parameters

(+ 6 violating CP)

SU(5) unification: 7 parameters

NUHM2: 6 parameters

NUHM1 = SO(10): 5 parameters

CMSSM: 4 parameters

mSUGRA: 3 parameters

Conclusion

After first 2 years of LHC:

No SUSY so far... Nor any other BSM hints...

(but the Higgs??)

2012 is poised to be a fantastic year!

slides from Bertolucci and deJog, at LHCP

G. Azuelos -AtCan meeting, Vancouver

backups

W_R

 $q\bar{q} \rightarrow W_R \rightarrow lN$, with N decaying subsequently to $N \rightarrow lW_R^* \rightarrow ljj$

ATLAS-CONF-2011-115

long-lived particles

Figure 3: Background estimates for the pixel detector (left) and the tile calorimeter (right). Signal samples are superimposed on the background estimate. The total systematic uncertainty of the background estimate is indicated by the error band.

long-lived particles

Figure 4: Cross-section limits at 95% CL as a function of sparticle mass. Since five candidate events are observed for the mass windows used for the 100 GeV mass hypotheses, the mass points between 100 and 200 GeV are connected with a dotted line. This indicates that fluctuations in the excluded cross-section will occur. The mass limits quoted in the text are inferred by comparing the cross-section limits with the model predictions. Systematic uncertainties from the choice of PDF and the choice of renormalisation and factorisation scales are represented as a band in the cross-section curves. Previous mass limits are indicated by shaded vertical lines for sbottom (ALEPH), stop (CDF) and gluino (CMS).

arXiv:1103.1984v1

strong gravity from ss dimuons

Figure 2: The track multiplicity distribution for same-sign dimuon events. The region with $N_{\rm trk} \geq 10$ is selected as the signal region. The background histograms are stacked. The signal expectation for a non-rotating black hole model with parameters $M_{\rm D} = 800$ GeV, $M_{\rm TH} = 4$ TeV, and six extra dimensions is overlaid for illustrative purposes. The bottom panel shows the ratio of data to the expected background (points) and the total systematic uncertainty on the background (shaded area).

Figure 3: 95% confidence level exclusion contours for non-rotating (left) and rotating (right) black holes in models with two and six extra dimensions. The dashed lines show the expected exclusion contour with the 1σ uncertainty shown as a band. The solid lines show the observed exclusion contour. The regions below the contour are excluded by this analysis. The dotted lines show lines of constant slope equal to 3, 4, and 5. Only slopes much larger than 1 correspond to physical models.

bounds on MWT parameters from W' and Z'

FIG. 1: Bounds in the (M_A , \tilde{g}) plane of the NMWT parameter space: (i) CDF direct searches of the neutral spin one resonance excludes the uniformly shaded area in the left, with $M_H = 200$ GeV and s = 0. (ii) The 95 % confidence level measurement of the electroweak precision parameters W and Y excludes the striped area in the left corner. (iii) Imposing the modified WRS's excludes the uniformly shaded area in the right corner. (iv) The horizontal stripe is excluded imposing reality of the axial and axial-vector decay constants. (v) The area below th thick uniform line is excluded by the CMS data [1]. (vi) Dashed and dotted lines are expected exclusions using different values of the integrated luminosity and center of mass energy.

J R Andersen, T Hapola and F Sannino, arXiv:1105.1433

