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The Standard Model (SM) gives an excellent description of nearly every laboratory
experiment performed to date. It provides a quantum mechanical description of all known
elementary particles and their interactions with each other (except for gravity). Even so,
there are many reasons why the SM cannot be the complete theory of the Universe; there
must exist new physics beyond the Standard Model (BSM) [1, 2, 3]. In these notes we go over
the main motivators for BSM phyiscs, and we outline some of the most promising proposals.

1 Gravity

An obvious shortcoming of the SM is that it does not describe the gravitational force. This
is almost never a problem in particle physics experiments because gravitational effects are
usually completely negligible compared to the other relevant forces. The weakness of gravity
can be seen in the size of Newton’s constant,

GN =
1

8πM2
Pl

' 6.9× 10−39 GeV−2 . (1)

Here, MPl ' 2.4× 1018 GeV is the reduced Planck mass. The corresponding quantity for the
weak force (below about 100 GeV) is the Fermi constant, GF = 1.16637 × 10−5 GeV−2 =√

2g2/8m2
W , which is over 30 orders of magnitude larger. The electromagnetic and strong

forces are even stronger than this at low energies.

The SM can be extended to include gravity in a relatively straightforward way [4, 5].1

Starting from the classical description of gravity, general relativity (GR), the metric field is
identified as the dynamical variable and quantum mechanics is applied to it. To do this, one
typically starts with a fixed background metric and expands in fluctuations around it.2 For
example, with a flat (Minkowski) background, we would write

gµν = ηµν + hµν/2MPl . (2)

A quantum field theory for hµν can now be built using the standard techniques applied to
the action for GR,

S =

∫
d4x
√
−g
(
M2

Pl

2
R(g) + LSM(g)

)
. (3)

The quantized excitations of hµν can be identified with a massless spin-2 graviton interacting
with the SM. This theory reproduces GR in this classical limit and agrees with experimental

1 Sorry for the bad pun.
2 You may have already done this when studying classical gravitational waves.
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data. From now on, when we refer to the SM we will implicitly mean this SM plus quantized-
GR theory.

Even though we have a quantum theory of gravity, it is not quite the quantum theory
of gravity everybody wants. The problem is that this theory is non-renormalizable, with all
of the interactions between the graviton and the SM involving higher-dimensional operators
suppressed by powers of MPl. As a result, this gravity-extended SM can be trusted as an
effective field theory at energies far below MPl, but it loses its predictive power for energies
approaching MPl. All current experimental measurements involve single-particle energies
well below MPl, so this breakdown of the effective theory has not been a huge problem.

Still, we would very much like to have a quantum theory of gravity that is valid up
to energies approaching the Planck scale.3 This is both a matter of theoretical principle,
as well as a necessary step in understanding black holes (which we do have evidence for)
and the microscopic structure of spacetime. Discovering the full quantum theory of gravity
is still a work in progress, and there are many proposals for what it could be. The best-
studied scenario is superstring theory in which the elementary constituents can be identified
with one-dimensional strings instead of point-like (i.e. zero-dimensional) particles [6, 7, 8].
The full implications of string theory are not fully understood, but the theory has been
very successful in describing the microscopic structure of black holes [9]. Incorporating the
SM within string theory in a consistent way seems to require extra spatial dimensions and
supersymmetry. We will discuss aspects of both below. Beyond providing a candidate for
QG, work connected to string theory has also led to important developments in quantum field
theory, condensed matter physics, and quantum information. Another popular attempt to
formulate a quantum theory of gravity is loop quantum gravity, in which spacetime emerges
in a more dynamical way and without reference to a fixed background metric [10, 11].

A generic expectation for a quantum theory of gravity is that it contains new states with
masses near MPl. Some of these heavy states may also have direct couplings to the SM.
(String theory exhibits both features.) At energies much lower than MPl, the heavy particles
can be integrated out to generate an effective field theory consisting of the SM and graviton
fields together with higher-dimensional operators connecting them. The leading terms in the
action of the low-energy EFT should match up with those in Eq. (3), and there will also
be additional higher-order operators suppressed by powers of MPl. Measuring the effects of
such higher-dimensional operators would give us hints about the underlying QG theory.

2 The Electroweak Hierarchy Problem

Electroweak symmetry breaking in the SM is induced by an elementary scalar Higgs field H.
This field develops a vacuum expectation value (VEV) of 〈H〉 = v ' 174 GeV that generates
masses for the weak vector bosons and the fermions of the theory. The electroweak hierarchy
problem is that the VEV of the Higgs field is very sensitive to quantum corrections. Because
of this, it is puzzling why the Higgs VEV has the value that it does, rather than being zero

3This is what people usually have in mind when they say “quantum gravity” (QG).
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Figure 1: Corrections to the scalar (left) and fermion (right) masses at one-loop order.

or much larger.

2.1 Scalar Masses are Sensitive

To illustrate the electroweak hierarchy problem, let us return to our simple Yukawa theory
containing a real scalar φ and a massive Dirac fermion ψ connected by a Yukawa coupling,

L =
1

2
(∂φ)2 − 1

2
m2φ2 + ψiγµ∂µψ −Mψψ − yφψψ . (4)

Suppose we want to make the scalar φ much lighter than the fermion ψ, corresponding to
m2 � M2. In this limit, let us compute the one-loop correction to the scalar mass squared
due to the fermion, corresponding to the first diagram in Fig. 1. It gives

∆Γ(φ2)(p) ∼ (divergent) +
y2

(4π)2
M2 ln

(
p2

M2

)
+ . . .+ (c.t.) (5)

The finite term proportional to M2 is a quantum correction to the squared mass m2 of the
scalar. For M2 � m2(4π/y)2, this correction is much larger than the original scalar mass
paramter m2 we started with. Now, we can always choose the counterterms to cancel off the
large finite correction as well as the formally divergent part, but this result suggests that the
natural size of the scalar mass m2 is at least as large as M2 times a loop factor. Arranging
for m2 to be much smaller than this would appear to require a theoretical fine-tuning.

It is also instructive to think about this correction from a low-energy EFT perspective.
At low energies E � M with m2 � M2, only the scalar degree of freedom is seen directly
and we can formulate an EFT containing the scalar alone. To do so, we need to match the
effective theory to the full theory at p2 ∼ M2. One of the corrections we should account
for is the fermion effect on the scalar mass parameter. This is accommodated by using a
different scalar mass in the bare EFT Lagrangian relative to the full theory to make up for
the absence of the fermion loop in the EFT. The difference is precisely the finite term in
Eq. (5). We call this the threshold correction to the scalar mass from integrating out the
fermion. Naturalness suggests that the scalar mass-squared parameter in the EFT should
not be much smaller than a loop factor times the threshold M2.

The sensitivity of scalar masses to quantum corrections is specific to scalars, and does
not arise for fermions or gauge bosons. We can examine the fermion case in our Yukawa
theory by taking m2 � M2. The leading quantum correction to the fermion mass mass in
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this limit comes from the second diagram of Eq. (1), and gives

∆Γ(ψ̄ψ)(p2) ∼ (divergent) +
y2

(4π)2
M ln

(
p2

m2

)
+ . . .+ (c.t.) . (6)

The situation here is much different from the scalar in that the finite correction to the fermion
mass is proportional to the fermion mass itself. This follows from the fact that the theory
has a symmetry in the limit M → 0 (or equivalently, M → −M). An important implication
of this result is that it is natural for the fermion mass to be arbitrarily small. A similar
argument can be applied to gauge bosons, where gauge invariance protects their masses.

2.2 The Higgs and the Hierarchy Problem

Going back to the SM, recall that the leading terms in the effective potential for the Higgs
field are

V = −µ2|H|2 +
λ

2
|H|4 . (7)

The Higgs VEV corresonds to the value of |H| that minimizes this potential, v2 = µ2/λ '
(174 GeV)2. The mass of the physical Higgs boson excitation about this minimum is mh =√

2λ v2 =
√

2µ2 ' 125 GeV, which has recently been measured experimentally [12, 13]. The
electroweak hierarchy problem corresponds to the sensitivity of the µ2 parameter to quantum
corrections.

Suppose we try to extrapolate the SM up to energies much larger than v, and let us
assume there exists a very heavy new particle Ψ with mass MΨ and coupling yΨ to the
Higgs. Just like in our toy model above, such a particle will induce a finite quantum (loop)
correction to the Higgs quadratic parameter in Eq. (7) on the order of [14]

∆µ2 ∼ ∓ y2
Ψ

(4π)2
M2

Ψ , (8)

where the minus (plus) sign corresponds to Ψ being a fermion (boson).

The electroweak hierarchy problem comes from our expectation that there exist new
states Ψ with masses much larger than µ. Such states would imply ∆µ2 � v2 ∼ µ2 as
long as yΨ is not too small. For example, our attempts at quantum gravity suggest new
states with MΨ ∼ MPl. If these heavy particles couple directly to the SM (such as can
occur in string theory), we would also have yΨ ∼ 1. However, even if the only coupling of
the new massive states to the SM is through the massless graviton, we would still expect
y2

Ψ ∼ (MΨ/MPl)
4/(4π)4 [14]. In both cases, ∆µ2 is much larger than µ2.

A quantum correction to ∆µ2 that is much larger than the observed value of µ2 is puzzling.
To achieve a very small µ2 relative to ∆µ2, the parameters in the underlying high-energy
theory must cancel out to a very high precision. From the point of view of the low energy
effective theory, there is no good reason why such a cancellation should occur. Thus, our
Universe seems to be very finely tuned unless there is new physics that forces ∆µ2 to be
small. Arguments based on naturalness are therefore a strong motivator for new physics
beyond the SM with characteristic mass near the weak scale.
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2.3 Fix #1: Supersymmetry

Supersymmetry (SUSY) is one of the most popular proposals for new physics beyond the SM.
It is an extension of the Poincaré symmetries of flat spacetime that connects particles with
different spins. For every known particle, SUSY predicts that there exists a superpartner
particle with the same charge but with spin differing by half a unit. This connection can
provide a solution to the electroweak hierarchy problem. Furthermore, SUSY is an essential
component in many attempts to construct a quantum theory of gravity, and can help to
explain some of the other shortcomings of the SM to be discussed below.

To illustrate how SUSY addresses the electroweak hierarchy problem, suppose there exists
a new fermion Ψ together with its superpartner boson Ψ̃, both with a coupling yΨ to the
Higgs field. The equality of this coupling is enforced by supersymmetry. Together, the net
leading correction to the Higgs quadratic parameter from this particle-superpartner pair is

∆µ2 ' y2
Ψ

(4π)2

(
M2

Ψ̃
−M2

Ψ̃

)
. (9)

This correction is acceptably small, ∆µ2 . µ2, provided the masses of the particle and
its superpartner are not too different. Supersymmetry therefore enforces a cancellation of
quantum corrections to the Higgs mass parameter. This cancellation can also be thought of
as an extension of the chiral protection of fermion masses to their scalar superpartners.

If supersymmetry were an exact symmetry of Nature, every particle would have the same
mass as its superpartner, and the leading correction of Eq. (9) would vanish. However,
we have not (yet) observed any supersupartners of SM particles, and we certainly would
have already if they had the same masses as their SM counterparts. Supersymmetry must
therefore be broken, either explicitly or sponatenously. For broken supersymmetry to address
the hierachy problem, the breaking must be soft, in that all Lagrangian terms that break
supersymmetry must be accompanied by a dimensionful parameter msoft. This implies that
at energies well above msoft, the effects of supersymmetry breaking are suppressed by powers
of msoft/p, and exact supersymmetry becomes an increasingly good approximation.

The soft breaking parameter also determines the typical mass-squared splitting between
particles and their superpartners. This implies that the masses of the SM superpartners

are on the order of
√
m2
soft +m2

SM . It also implies that the difference of masses squared

in Eq. (9) is approximately m2
soft. Taken together, we see that if SUSY is to address the

hierarchy problem, we need msoft . (4π/yψ)µ . TeV. This motivates LHC searches for SM
superpartners with masses in the TeV range.

For more detailed discussions of supersymmetry and its applications to particle physics
and beyond, I highly recommend the reviews of Refs. [15, 16, 17] and the textbooks of
Refs. [18, 19].
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2.4 Fix #2: New Strong Dynamics

A second approach to the hierarchy problem is to remove the Higgs as fundamental scalar.
This can occur if the Higgs scalar is a bound state of fermions (or vector bosons) held together
by a new strongly-interacting force. A related possibility, that has been largely ruled out
by the discovery of a SM-like Higgs boson, is that the new strong dynamics itself induces
electroweak symmetry breaking [20, 21].

Electroweak symmetry breaking through strong dynamics already occurs in the SM
through QCD. Consider a simplified version of the SM containing the full SU(3)c×SU(2)L×
U(1)Y gauge invariance, but with no Higgs boson and only a single generation of fermions.
In this theory, it might seem that all the fermions are massless and the full SU(2)L×U(1)Y
gauge invariance remains manifest. However, it turns out that electroweak symmetry is
induced by QCD confinement [20, 21].

To see how this works, recall that the QCD portion of the theory has an approximate
Gflav = SU(2)L×SU(2)R×U(1)V global symmetry, and it is broken down to SU(2)V ×U(1)V
by QCD confinement at scale ΛQCD. The electroweak symmetry group SU(2)L × U(1)Y is
a gauged subgroup of Gflav. The gauged and global SU(2)L parts coincide directly, while
hypercharge is generated by

Y = t3R +
1

6
I , (10)

where the second term coincides with U(1)V up to an overall normalization. The U(1)em
subgroup of the electroweak group is generated by

Q = t3L + Y = t3L + t3R +
1

6
I , (11)

as we discussed previously.

As SU(3)c runs strong at low energies, a quark condensate is generated that sponta-
neously breaks the approximate global symmetry down to Gflav → SU(2)V × U(1)V . In
our previous discussion of QCD, this gave rise to three approximate Nambu-Goldstone
bosons (NGBs) that we identified with pions. Here, however, we also have electroweak vector
bosons present in the theory at the confinement scale. Looking at the gauged subgroup of
Gflav, the quark condensate also breaks SU(2)L × U(1)Y → U(1)em. This suggests three
massive vector bosons. I turns out that this occurs through the electroweak vector bosons
eating the pions.

To see this explicitly, let us try to write an effective theory for the NGBs. The leading
term that is consistent with the global symmetries (in the limit g, g′ → 0) and the gauged
electroweak subgroup is

L ⊃ f 2

4
tr
(
DµΣ†DµΣ

)
, (12)

where

DµΣ = ∂µΣ + igtaW a
µΣ− ig′BµΣ t3 . (13)

6



This form follows from the embedding of the electroweak group in Gflav. Note that the B
part of the hypercharge component cancels out. Expanding out Eq. (12), the leading terms
involving the vector fields are

L ⊃ f

2
gW+

µ ∂
µπ− +

f

2
gW−

µ ∂
µπ+ +

f

2

(
gW 3

µ + g′Bµ

)
∂µπ0 (14)

+
f 2

4

[
g2W+

µ W
µ− + (gW 3

µ − g′Bµ)2
]
.

The second line gives the usual mass terms for the weak vector bosons. The bilinear operators
in the first line are non-standard, but they signal that that the would-be pions are eaten
by the massive vector bosons to generate their longitudinal components. Indeed, we can
eliminate these bilinear terms completely by choosing a SU(2)L × U(1)Y gauge such that
Σ→ I, corresponding to Πa → 0. The resulting W and Z masses are

mW =
g

2
f , mZ =

√
g2 + g′2

2
f , (15)

which is just like the usual SM expressions but with v → f .

In contrast to electroweak symmetry breaking by a fundamental Higgs field, there is no
hierarchy problem for this QCD realization. All the fermions and gauge bosons are effectively
massless at high energies by gauge invariance. Going to lower energies, the confinement scale
ΛQCD is generated by dimensional transmutation. While this solution is elegant, it does not
agree with data because it predicts mW,Z . 100 MeV, well below the observed values.

While QCD itself does not work for electroweak symmetry breaking, a scaled up version
based on a new non-Abelian gauge group GTC and with new fermions charged under both
GTC and SU(2)L×U(1)Y can generate realistic vector boson masses. Such theories are often
called technicolour, and they require confinement scales of at least few hundred GeV [20],
corresponding to fTC ∼ v. For the most part, these proposed extensions of the SM do not
work. They tend to be ruled out by precision electroweak tests and direct searches for the
new fermions. They also have trouble generating the observed SM fermion masses, and they
usually do no contain a scalar that can be identified with the SM-like Higgs boson seen at
the LHC.

A variation on this class of ideas that is still viable relies on the new strong dynamics
to generate the Higgs scalar as a composite bound state of more fundamental objects. In
such composite Higgs scenarios, the resulting Higgs scalar can generate some or all of the
fermion masses and electroweak symmetry breaking. Most recent attempts to realize the
Higgs boson as a composite state try to identify it with an approximate NGB mode [22].
Recall that NGBs, either exact or approximate, are the exceptions to the expectation of
m ∼ fTC for bound states. A parametrically lighter pseudo-NGB (pNGB) Higgs boson is
attractive for two related reasons. First, it gives a natural separation between the weak scale
and fTC , and allows us to treat the Higgs field cleanly as a scalar field in an EFT valid below
fTC . In this EFT, electroweak symmetry breaking is (mostly) induced by the Higgs VEV in
much the same way as in the SM. A second consequence of fTC > mW is that the corrections
to precision electroweak observables are not as large. Interestingly, composite Higgs scenarios
are closely related to certain theories with an extra spatial dimension [23, 24].
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2.5 Fix #3: Extra Dimensions

The third approach to the electroweak hierarchy problem is to postulate that the fundamental
Planck scale is not much larger than the electroweak scale. In scenarios based on this
approach, the strength of gravity is diluted in a way that makes it appear to be much weaker
(to us) than it really is, corresponding to a true scale of quantum gravity M∗ �MPl. While
we do not have a full understanding of quantum gravity, it is very likely that our QFT
description of elementary particles is unlikely to be valid at energies above M∗, and thus
there is no hierarchy problem provided M∗ . 4πmW .

The known mechanisms for diluting the apparent strength of gravity typically make use
of extra spacelike dimensions.4 Such extra dimensions appear to be an essential component
of string theories [6, 7, 8], and they have been studied in various other contexts as well [25].
In relation to the hierarchy problem, the two most promising approaches are large extra
dimensions, and a warped extra dimension.

In the Large Extra Dimensions (LED) scenario, the strength of gravity we see is reduced
by a factor of the volume of the extra dimensions [26, 27, 28]. Suppose we have N flat
extra dimensions that are periodic with radius R, and let M∗ be the fundamental Planck
scale in the full d = (4 +N)-dimensional theory. The gravitational potential Φ in the weak
(Newtonian) limit satisfies the Poisson equation

~∇2Φ ∼ 1

M2+N
∗

ρ , (16)

where ρ is the local energy density. For a pair of static point masses separated by a distance
r, this leads to a gravitational force of

F (r) ∼ 1

M2+N
∗

m1m2

r2+N
(r � R) , (17)

∼ 1

M2+N
∗

m1m2

r2(2πR)N
(r � R) . (18)

For r � R, the gravitational flux can now spread out in more ways than d = 4 leading to
a faster decrease of the force with distance. However, for r > R the extent to which the
flux lines can spread is limited by the size of the extra dimensions, and the familiar 1/r2

behaviour of d = 4 is regained. Matching the long-distance expression to Newton’s force
law, we can also identify

M2
Pl = (2πR)nM2+N

∗ = VNM
2+N
∗ , (19)

where VN is the total volume of the compact extra dimensions.

The idea of Refs. [26, 27, 28] was to use this dilution to recast the hierarchy problem by
making R large enough that M∗ ∼ TeV.5 For n extra dimensions of equal size, the required

4 Timelike extra dimensions lead to challenges with causality and such.
5To fully solve the hierarchy problem, a mechanism to fix the large radii is also needed [29].
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radius R is

2πR ' 1032/n10−17cm ∼


1015 cm (R−1 ∼ ...) ; N = 1
1 mm (R−1 ∼ 10−13 GeV) ; N = 2
1µm (R−1 ∼ 10−8 GeV) ; N = 3
10 fm (R−1 ∼ 10−2 GeV) ; N = 6

. (20)

These radii are very large compared to typical particle physics scales. For this reason,
scenarios of this type are referred to as large extra dimensions (LED) or ADD after the
original authors [26, 27, 28].

With a Warped Extra Dimenson, gravity appears to be extremely weak because it is
localized away from us in the extra dimension [30, 31]. The standard example is the Randall-
Sundrum (RS) model, in which there is a single extra dimension of finite size w ∈ [0, π rc]
with a net spacetime curvature described by the metric [30, 31]

ds2 = GMNdx
MdxN = e−2kwηµνdx

µdxν − dw2 , (21)

where k characterizes the curvature. This spacetime is illustrated in Fig. 2, and is said to be
warped, with the boundary at w = 0 called the UV brane, the boundary at w = πrc called
the IR brane, and the space in between called the bulk.

The RS spacetime is a solution of Einstein’s equations in d = 5 with a bulk cosmological
constant [30, 31]. At long distances, r � rc, the gravitational force law between a pair of
point masses in this spacetime reduces to the standard Newtonian form with an effective
(reduced) Planck scale of

M2
Pl =

M3
∗
k

(
1− e−2πkrc

)
. (22)

For moderate values of krc and M∗ ∼ k, this gives an effective d = 4 Planck scale of about
the same order as the d = 5 Planck scale M∗ and the curvature k. Thus, there is no strong
volume dilution as in LED.

A warped extra dimension can address the electroweak hierarchy problem if the Higgs
field is localized on the IR brane at w = πrc. To see how, consider the action for the Higgs
field (generalized to be consistent with general relativity):

SHiggs =

∫
d4x

∫ πrc

0

dw
√
G
[
Gµν∂µH

†∂νH − V (|H|)
]
δ(w − πrc) (23)

=

∫
d4x e−4πkrc

[
e2πkrcηµν ∂µH

†∂νH − V (|H|)
]

(24)

=

∫
d4x

[
ηµν ∂µH̃

†∂νH̃ − e−4πkrcV (|eπkrcH̃|)
]
, (25)

where in the last line we have changed variables to H = eπkrcH̃ to make the kinetic term
canonical. If the original Higgs potential for H takes the standard form, V (|H|) = −µ2|H|2+
λ|H|4/2, the rescaled potential in terms of the new variables is

e−4πkrcV (|eπkrcH|) = −
(
µ2e−2πkrc

)
|H̃|2 +

λ

2
|H̃|4 . (26)
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w = 0

z = L0

w = π rc

z = L1

IR brane

UV brane

w, z

Figure 2: Simple picture of the RS spacetime.

The key feature here is that the dimensionful Higgs mass parameter µ2 has been warped by
the factor e−2πkrc . Naturalness suggests µ2 ∼ M2

∗ ∼ M2
Pl. Thanks to the warp factor, the

natural value of the effective Higgs mass parameter on the IR brane can be near the weak
scale provided the warp factor is big enough, which corresponds numerically to krc ∼ 11:

µeff ∼ M∗e
−πkrc ∼ TeV (krc ∼ 11) . (27)

More generally, any dimensionful quantity localized at w in the bulk gets rescaled by e−πkw.
This rescaling is closely related to scaling of operators by renormalization group effects in
conformal field theories [23, 24], as you studied in question #3 of hw-08.

3 Cosmology

If the SM-plus-gravity quantum effective theory of Eq. (3) is the complete theory of ele-
mentary particles at energies below MPl, it should be able to account for the large-scale
structure of the Universe. However, detailed cosmological measurements do not agree with
the predictions of the SM. There are three main puzzles: the extreme flatness and spatial
uniformity of the Universe, the apparent need for dark matter, and the excess of matter over
antimatter. All three are strongly suggestive of new physics below the Planck scale.

The Universe is extremely uniform over very large distances. This is seen best in the
cosmic microwave background (CMB) radiation, which consists of photons with a mean
effective temperature of about T ' 2.73 K ' 2.4 × 10−13 GeV [32]. Relative to the mean
value, the primordial fluctuations in the CMB temperature are very small – only about one
part in 105. Extrapolating the CMB back in time using the SM and GR implies that the
early Universe consisted of a very hot plasma of subatomic particles. The energy density of
this plasma caused the Universe to expand, which in turn caused the plasma to cool. When
the plasma temperature fell below T ' 0.3 eV, its charged components (mostly protons and
electrons) combined to form neutral atoms. This quickly depleted the electrically-charged
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fraction of the plasma, a process called recombination, and allowed the remaining photons
to travel across the Universe unimpeded. What we see today as the CMB are these leftover
photons, and therefore the CMB gives us a snapshot of the Universe when it was much
younger.

The uniformity of the CMB is curious because the extrapolation of the SM back in time
also implies that many different regions of the CMB we see today were causally disconnected
when the CMB was formed at recombination. From this point of view, it is very surprising
that these regions should be so close in temperature. The leading resolution of this puzzle is
inflation, a period of rapid exponential expansion of spacetime in the very early Universe [33].
Inflation allows a small causally connected patch of spacetime to be expanded so much that
it makes up the entire visible sky today. Most theories of inflation introduce a new scalar
field to the SM with a very flat potential [33].6 If this inflaton scalar field starts off with
a large displacement from the minimum of its potential, the potential energy of the field
can drive a period of inflation. The expansion from inflation dilutes away everything that
was present in the Universe before it began. Eventually, the inflaton field rolls down to the
minimum of the potential, oscillates for a bit, and transfers its energy back to radiation when
it decays in a process called reheating. The end result of inflation and reheating is a very
hot and uniform thermal plasma of subatomic particles; this is precisely what we observe.

Inflation makes other predictions that agree with cosmological observations. Measure-
ments of the CMB show that the net spatial curvature of the Universe is zero to within a small
experimental uncertainty. This is also expected from inflation, since any initial curvature
would be strongly diluted by the exponential inflationary expansion. The spectrum of small
temperature fluctuations in the CMB is consistent with and expected from inflation. In
particular, they can be understood as coming from quantum fluctuations in the inflaton field
during inflation. While these various measurements agree with the general predictions of
inflation, we still do not have enough information to deduce the underlying theory of the
inflaton.

Detailed studies of the CMB together with other cosmological and astrophysical observa-
tions point towards additional shortcomings of the SM. One of the most striking is that the
total density of matter (i.e. non-relativistic particles) appears to be much larger than what
can be accounted for by the SM [35, 36, 37]. The evidence for this extra dark matter comes
from a diverse set of observations over a very broad range of distances. These include galactic
rotation curves, the average motion of galaxy clusters, the structure of the distribution of
matter, and the fluctuations in the CMB.

The most simple explanation for dark matter is the existence of a new massive particle
with a moderate cosmological density. To account for observations, it must be electrically
neutral and uncharged under the strong force, but other than that we know very little about
what such a particle could be. Many theories of BSM physics predict or can accommodate
a dark matter candidate. In particular, the observed DM density can plausibly be explained
by a weakly-interacting massive particle (WIMP), a new particle with mass close to the
weak scale and weak interactions with the SM [35, 36, 37]. Such WIMPs arise frequently

6The SM Higgs may also induce inflation if it has a non-minimal coupling to gravity [34].
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in BSM theories that address the electroweak hierarchy problem. On the experimental side,
searches for dark matter are underway using a wide range of techniques including particle
colliders, deep underground direct dark matter detectors, and observations of cosmic rays in
our galaxy [37]. None of these experiments has found anything conclusive yet.

The observed density of SM matter in the Universe is also puzzling. By energy, it is
dominated by baryons (in the form of protons and light nuclei). and it consists almost
entirely of matter rather than antimatter [38]. The origin of this baryon asymmetry is a
mystery, and there is no known way to generate it within the SM alone. In contrast, there
are a number of viable mechanisms to generate the baryon asymmetry in BSM theories [38].

A fourth puzzle related to cosmology is the cosmological constant problem [39]. Most of
the energy density in the Universe today (about 75%) seems to come from a positive net
value of the background vacuum energy. This vacuum energy can be accommodated within
the SM by adding a constant term to Eq. (3),

S → S −
∫
d4x
√
−g Λcc , (28)

where Λcc is called the cosmological constant (CC). Note that without gravity, the CC would
not have any physical effects. However, in GR it acts as a source for spacetime curvature
and must be taken into account. The problem with the CC is its size (determined from
observation), Λcc ' (2.5×10−12 GeV)4. This is absolutely miniscule compared to the natural
value of M4

Pl, or any other dimensionful scale within the SM for that matter. It is not clear
how to explain this vast difference.

4 Flavour and CP Violation

The SM has three generations of quarks and leptons with a very wide range of masses. Weak
interactions induce a mixing between these different flavours (or generations) of fermions,
and they allow the heavier flavours to decay to the lighter ones and mediate CP violation.
While the SM is able to accomomdate this structure, it does not explain it.

The range of fermion masses in the SM is enormous, from sub-eV for the neutrinos,
to me ' 0.511 × 10−3 GeV for the electron, and up to mt ' 174 GeV for the top quark.
Quark mixing via the weak interactions is described by the unitary Cabbibo-Kobayashi-
Maskawa (CKM) matrix, whose numerical values are [40],

|VCKM | =

 0.9743(2) 0.2253(8) 0.0041(5)
0.225(8) 0.99(2) 0.041(1)
0.008(1) 0.040(3) 1.02(3)

 . (29)

These entries are seen as being very suggestive of an underlying hierarchical structure. The
CKM matrix also contains phases that give rise to CP violation.

All the charged fermion masses and mixings in the SM come from Yukawa couplings to
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the Higgs of the form

−L ⊃ yfijF
i

Lf
j
R

(∼)

H +(h.c.) , (30)

where FL is a SU(2)L doublet, fR is a right-handed SU(2)L singlet, H is the Higgs, and
i, j are flavour indices that run over the three generations. From this perspective, a theory
for the underlying structure of flavour and CP is equivalent to theory for the origin of the
Yukawa couplings yfij.

The multi-generational structure of the SM allows for CP violation. Observations of CP
violation in quark-mediated processes is consistent with the possible phases of the CKM
matrix. These phases emerge from complex values of the Yukawa couplings in Eq. (30), and
at least three generations of quarks are needed for them to produce observable effects. For
this reason, it is reasonable to expect that an explanation for the origin CP violation might
be related to the origin of quark flavour.

The SM has another source of CP violation beyond the CKM matrix. It is the QCD Θ
parameter, corresponding to the coefficient of the operator [41]

−L ⊃ Θ

32π2
εµνρσGa

µνG
a
ρσ , (31)

where Ga
µν is the gluon field strength. If all the quark masses are non-zero (which appears to

be the case experimentally), the Θ parameter can give rise to observable CP-violating effects.
In particular, it can induce an electric dipole moment (EDM) for the neutron. Attempts to
measure such an EDM have found nothing so far implying |Θ| . 10−10 [41]. The required
smallness of this parameter has no good explanation in the SM, and is called the strong CP
problem. The most promising solution is to introduce a new pseudoscalar axion particle that
dynamically drives Θ→ 0 [42].

5 Neutrino Masses and Mixings

Neutrinos (and antineutrinos) in the SM are predicted to be massless and to have one of three
definite flavours corresponding to the e, µ, and τ charged leptons. As discussed previously
in the course, there is no leptonic equivalent of the CKM quark mixing matrix, and lepton
flavour is conserved in the SM. However, detailed measurements of neutrinos have detected
the phenomenon of neutrino oscillations, in which a neutrino of one type transforms into
another. These oscillations are definitive proof of new physics beyond the SM, and they
imply further that at least some of the SM neutrinos have mass [43, 44, 45].

In contrast to the other SM fermions, the neutrinos interact exclusively through the
weak vector bosons. This makes them much harder to detect than the other SM fermions,
and allows them to travel very long distances through matter without being scattered. The
flavour of a neutrino when it is produced is deduced from the flavour of the charged lepton
that is created (or decayed) along with it. Similarly, neutrinos are “detected” when they
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scatter with other matter, often in conjunction with a charged lepton. Neutrino oscillations
are observed in a difference between the neutrino flavour at detection relative to production.

To illustrate how neutrino oscillations work, consider a simple two-state quantum me-
chanics system with flavour eigenstates |νe〉 and |νµ〉 and mass eigenstates |ν1〉 and |ν2〉. The
flavour states are those produced in conjunction with the corresponding charged leptons,
while the mass states are energy eigenstates with energies equal to mi in the particle rest
frame. Neutrino oscillations can occur when the flavour and mass eigenstates do not line up,(

|νe〉
|νµ〉

)
=

(
cθ sθ
−sθ cθ

)(
|ν1〉
|ν2〉

)
. (32)

Suppose a |νe〉 state is created at (t, ~x) = (0,~0) with a 4-momentum p that is much larger
than m1 and m2. At later times, it will evolve into

|νe(x)〉 = e−ip·x |νe〉 (33)

= e−ip1·x |ν1〉+ e−ip2·x |ν2〉 .

The probability to detect the |νe〉 state at a detector a distance L from the production point
is then

|〈νe|νe(L)〉|2 = 1− sin2(2θ) sin2

(
∆m2L

4E

)
(34)

= 1− sin2(2θ) sin2

[
1.27

(
∆m2

eV2

)(
L

km

)(
GeV

E

)]
,

where ∆m2 = m2
2 −m2

1. To derive this result, the standard approximation is to use pi · x '
(Ei − pi)L ' m2

iL/2E [43]. This is a bit of cheat, but Eq. (34) is the correct result of a
proper derivation using density matrices and wave packets [44, 45].

The result of Eq. (34) illustrates the necessary ingredients for neutrino oscillations.
Specifically, the neutrinos must have different masses (∆m2 6= 0), and the mass and flavour
eigenstates must be misaligned θ 6= 0. When these conditions are met, the probability to
observe the initial |νe〉 neutrino flavour in the detector varies with the neutrino energy and
the detector distance. There is also a non-zero appearance probability to detect the second
|νµ〉 flavour, which by unitarity is

Peµ = 1− Pee = sin2(2θ) sin2

(
∆m2L

4E

)
. (35)

Some experiments measure appearance, others disappearance, and a few do both.

Oscillations among all three flavours of SM neutrinos have been observed. The gen-
eralization of the two-flavour mixing described above to the full system is given by the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, |νe〉|νµ〉

|ντ 〉

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 |ν1〉
|ν2〉
|ν3〉

 , (36)
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with the unitary mixing matrix UPMNS typically decomposed according to

U =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 eiα1 0 0
0 eiα2 0
0 0 1

 (37)

This decomposition is useful because the various mixing angles have been measured in
different systems [40]. The θ12 ' 35◦ angle is determined best from measurements of
neutrinos emitted by nuclear reactions in the sun, and is sometimes called the solar mixing
angle. Neutrinos obtained from cosmic ray showers in the atmosphere gave the first good
determination of θ23 ' 45◦, and it is sometimes called the atmospheric mixing angle. Recent
measurments of neutrinos produced in nuclear reactors have yielded θ13 ' 14◦. Oscillation
measurements also give values for the mass differences of neutrinos, with

∆m2
12 ' 7.6× 10−5 eV2 , |∆m2

23| ' 2.4× 10−3 eV2 . (38)

There is also a limit on the sum of the SM neutrino masses from cosmological observations of∑
imi . 0.2 eV [46]. Compared to the other fermions of the SM, the neutrinos are orders of

magnitude lighter, and their mixings are significantly larger than those of the CKM matrix.

Neutrino masses and mixings require new physics beyond the SM (as we have defined
it). The easiest way to generate them is to add three gauge single right-handed neutrinos
NR = (1, 1, 0) with the Yukawa coupling

−L ⊃ yNAB
LLA

H̃NRB
+ (h.c.) . (39)

After electroweak symmetry breaking, H̃ → (0, v + h/
√

2), this generates a neutrino mass
matrix with entries

(mν)AB = (yN v)AB . (40)

In the end, we get three massive Dirac neutrinos and a mixing matrix connecting them to
the charged leptons via the W boson. However, given the extreme smallness of the observed
neutrino masses, many consider this solution unsatisfying on its own.

A popular variation on the simple picture above is called the (Type-I) neutrino seesaw.
Since the NR are gauge singlets, we can also add Majorana masses for them of the form

−L ⊃ 1

2
MNAB

(N c
RA

)NRB
+ (h.c.) . (41)

Combined with the Dirac mass term of Eq. (39), the full neutrino mass matrix takes the
schematic form

Mν =

(
0 yNv
yNv MN

)
. (42)

For MN � yNv, the mass eigenstates then consist of six Majorana fermions with mass
eigenvalues of the form

mν '
(yNv)2

MN

, MN . (43)
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The three light states are identified with the SM neutrinos, while the three heavy neutrinos
are mostly singlets and very difficult to detect. For yN ∼ 1, the SM-like neutrinos have
sub-eV masses for MN ∼ 1013 GeV.

It is also interesting to look at the EFT obtained by integrating out very massive right-
handed neutrinos. The leading operator generated from doing so is

−LEFT ⊃
1

2MN

(LcLA
)yNAB

yNBC
LLC

+ (h.c.) . (44)

This is the lowest-dimensional non-renormalizable operator that can be built out of SM fields
alone. After electroweak symmetry breaking, it generates neutrino masses on the order of
mν ∼ y2

Nv
2/MN , as expected from the neutrino seesaw.
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