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In the last set of notes we studied symmetries. These are transformations of a system
that leave the physics unchanged. For the quantum field theories that we are interested
in to describe elementary particles, this means that the action should be invariant under
symmetry transformations. Among the symmetries we studied, we considered both discrete
and continuous symmetries. In all cases, the corresponding transformations acted at all
points in spacetime in the same way. For this reason, these symmetries are sometimes called
global symmetries.

The topic of these notes is gauge invariance, which we will see corresponds to invariances
under transformations can that act in a spacetime-dependent way. For this reason, they are
somtimes called local symmetries. However, this description can be a bit misleading since
the physical interpretation of gauge invariance is very different from global symmetries.

To explain all this, we will start with the familiar example of quantum electrodynam-
ics (QED). The underlying invariance corresponds to the continuous Lie group U(1), and
we will see that gauge invariance dictates how the photon couples to charged matter. From
there, we will generalize to gauge theories based on more complicated Lie groups, bringing
us to the non-Abelian gauge theories that arise in the Standard Model.

1 Gauge Invariance and QED

Recall the QED Lagrangian:

L =
∑
i

[
ψiiγ

µ(∂µ + ieQiAµ)ψi −mψiψi
]
− 1

4
FµνF

µν . (1)

This theory has a continuous symmetry under the transformations{
ψi → eiQiαψi
Aµ → Aµ

(2)

This works provided the transformation parameter α has the same value everywhere.

Consider next what happens if we allow the transformation parameter to vary over
spacetime: α = α(x). Doing so, we find that the transformation above is no longer a
symmetry of the theory. For example,

ψiiγ
µ∂µψi → ψiiγ

µ∂µψi + ψiγµ(iQi∂µα)ψi . (3)

Thus, the transformation of Eq. (2) is not a symmetry of the theory for non-constant
parameters α(x) due to the derivative acting on it.
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The invariance of the theory under spacetime-dependent transformations is restored if
the vector field also transforms according to:{

ψi → eiQiαψi
Aµ → Aµ − 1

e
∂µα.

(4)

To see this, note that the combined transformations imply that

(∂µ + ieQiAµ)ψi := Dµψi → eiQiαDµψi , (5)

and therefore ψiiγ
µDµψi is invariant under the transformation for arbitrary α(x). The

differential operator Dµ is sometimes called a covariant derivative. It is also not hard to
check that this shift in the photon field does not alter the photon kinetic field:

Fµν = (∂µAν − ∂νAµ)→ (∂µAν − ∂νAµ)− 1

e
(∂µ∂ν − ∂ν∂µ)α = Fµν + 0 . (6)

Thus, QED is invariant under the combined transformations of Eq. (4) for any reasonable
arbitrary function α(x).

At first glance this invariance might just seem like a clever trick, but the river beneath
these still waters runs deep. Thinking back to regular electromagnetism (of which QED is just
the quantized version), one often deals with scalar and vector potentials. These potentials
are not unique and are therefore not observable (for the most part), and the true “physical”
quantities are the electric and magnetic fields. The vector field Aµ in QED, corresponding
to the photon, is identified with these potentials by

Aµ = (φ, ~A) , (7)

where φ and ~A are the usual scalar and vector potentials. This is justified by the equations
of motion derived from the QED Lagrangian provided we also identify

F 0i = −Ei , F ij = −εijkBk , (8)

with the electric and magnetic fields. With this identification, the transformations of Eq. (4)
coincide with the usual “gauge” transformations you should have encountered in electro-
magnetism. Sometimes we call Aµ the gauge boson and the operation of Eq. (4) a gauge
transformation.

Keeping in mind the story from electromagnetism, the interpretation of the quantum
fields in QED is that only those quantities that are invariant under the trans-
formations of Eq. (4) are physically observable. In particular, the vector field Aµ
that represents the photon is not itself an observable quantity, but the gauge-invariant field
strength Fµν is. Put another way, the field variables we are using are redundant, and the
transformations of Eq. (4) represent an equivalence relation: any two set of fields (ψ,Aµ)
related by such a transformation represent the same physical configuration. Sometimes the
invariance under Eq. (4) is called a local or gauge symmetry, but it is not really a symmetry at
all. A true symmetry implies that different physical configurations have the same properties.
Gauge invariance is instead a statement about which configurations are physically observable.
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Gauge invariance is also sensible if we consider the independent polarization states of the
photon, of which there are two. The vector field Aµ represents the photon, but it clearly has
four independent components. Of these, one component (corresponding to configurations of
the form Aµ = ∂µφ for some scalar φ) is already non-dynamical on account of the form
of the vector kinetic term. Invariance under gauge transformations effectively removes
the additional longitudinal polarization leaving behind only the two physical transverse
polarization states. Note as well that if the photon had a mass term, L ⊃ m2AµA

µ/2,
the theory would no longer be gauge invariant. Instead, the longitudinal polarization mode
would enter as physical degree of freedom. Equivalently, gauge invariance forces the photon
to be massless.

In the discussion above we started with the QED Lagrangian and showed that it was
gauge-invariant. However, the modern view is to take gauge invariance as the fundamental
principle. Indeed, the only way we know of to write a consistent, renormalizable theory
of interacting vector fields is to have an underlying gauge symmetry. For QED, we could
have started with a local gauge invariance for a charged fermion field and built up the rest
of the Lagrangian based on this requirement. In this context, the vector field is needed to
allow us to define a sensible derivative operator on the fermion field, which involves taking a
difference of two fields at different spacetime points with apparently different transformation
properties, and corresponds to something called a connection.1 Gauge invariance completely
fixes the photon-fermion interactions, illustrating why it is so powerful. We will see shortly
that gauge invariance is even more powerful when the underlying symmetry transformations
are more complicated.

2 Non-Abelian Gauge Invariance

We have just seen that QED has an underlying invariance under U(1) gauge transformations,
and this invariance determines nearly the whole structure of the theory. Now, we also know
that U(1) is just the tip of the iceberg when it comes to compact Lie groups. From this point
of view, it is completely natural to try to construct field theories with a gauge invariance
under non-Abelian transformation groups such as SU(N) or its many friends. This is what
we will do here. Along the way, we will see that much of the structure of QED goes through
unchanged, but that there are a few very important differences.

Consider an irreducible representation (= irrep) r of a non-Abelian compact Lie group
G. If the irrep has dimension n, we can write the representation matrices according to2

Ur = eiα
atar :=

∞∑
n=0

1

n!
(iαatar)

n , (9)

where the generators tar are (n× n) Hermitian matrices satisfying the Lie algebra relation

[tar , t
b
r] = ifabctc . (10)

1 See Ref. [2] for a nice explanation of these slightly cryptic comments.
2 As usual, any function of a matrix should be thought of as a formal power series.
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This representation acts on an n-dimensional vector space.

A set of n fields ψi, i = 1, 2, . . . , n, is said to transform under the representation r if the
gauge transformation law for them is

ψi → ψ′i = (Ur)ijψj

=
(
eiα

ata
)
ij
ψj (11)

= ψi + iαa(tar)ijψj +O(α2) .

For the most part, we will just write the n components ψi as a single column vector ψ and
suppress the indices, ψ → Urψ, but do keep in mind that they are there.

We now have that ψ → Urψ and ψ̄ → ψ̄U †r . However, the derivative of ψ, which we will
need for its kinetic term, does not transform quite so nicely if the transformation matrix
varies over spacetime:

∂µψ → Ur∂µψ + (∂µUr)ψ . (12)

It follows that ψ̄iγµ∂µψ is not invariant due to the derivative of the transformation matrix.
Note that we have to be a bit careful with this piece because, in contrast to the Abelian
case, one typically has

∂µ(eiα
ata) 6= i(∂µα

atar)e
iαatar 6= eiα

atar i(∂µα
a tar) . (13)

The reason for this is that αatar and (∂µα
a)tar do not commute with each other unless ∂µα

a =
λαa. Thus, we will stick with the correct expression of Eq. (12).

To make the kinetic term for the charged field invariant under non-Abelian transforma-
tions of the form of Eq. (11), we mimic QED and introduce a matrix-valued vector field

Arµ := Aaµt
a
r (14)

that transforms according to

Arµ → UrArµU
−1
r +

1

ig
Ur(∂µU

−1
r ) :=

1

ig
Ur(DµU

−1
r ) . (15)

Coupling this to the charged field, we get

(∂µ + igArµ)ψ →
[
I ∂µ + ig

(
UrAµU

−1
r +

1

ig
Ur∂µU

−1
r

)]
Urψ (16)

= Ur (∂µ + igArµ)ψ .

As in QED, we call the combination Drµ = (∂µ + igArµ) the covariant derivative operator
for the representation r,3 and ψ̄iγµDrµψ (for ψ a fermion) is gauge invariant.

The definitions above lead to (at least) two important questions. First, how do we
construct a reasonable gauge-invariant kinetic term for the gauge field? Second, our definition

3 The ∂µ part of this operator is implicitly multiplied by the n× n identity matrix.
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of the gauge field Arµ depends on the representation of the corresponding matter field,
so do we need additional gauge fields for other matter fields transforming under different
representations? It turns out that the answers to both questions are closely related.

Starting with the second question, working out the transformation law explicitly to linear
order in the parameter αa one finds that

Aaµt
a
r → A

′a
rµt

a
r = UrArµU

−1
r +

1

ig
Ur∂µU

−1
r (17)

=

(
Aaµ + fabcAbµα

c − 1

g
∂µα

a

)
tar +O(α2) .

At this order, we see that the transformation law for the coefficient fields Aaµ is independent
of the specific representation. Moreover, for αa = constant the second line shows that it
corresponds to Aaµ transforming in the adjoint representation of the group. One can extend
this result to all orders in αa (by induction or by composing infinitesimal transformations).
Therefore, it is sufficient to introduce a single set of coefficient gauge fields Aaµ to ensure the
invariance of the kinetic terms of fields transforming under any representation at all of the
gauge group.

Moving next to the kinetic term for these gauge fields, a reasonable first guess would
be to start with the combination ∂µA

a
ν − ∂νAaµ. Unfortunately, it has a complicated gauge

transformation property and it is not at all clear how to put it into a gauge-invariant kinetic
term. Instead, let us use the nice gauge transformation properties of the covariant derivative
as our guide. Acting on a field transforming under the rep r, we found that the covariant
derivative of that field transforms as Dµψ → UrDµψ. Equivalently, as a differential operator,
we have that Dµ → UrDµU

−1
r . In the same way, the covariant commutator differential

operator transforms as [Dµ, Dν ] → Ur[Dµ, Dν ]U
−1
r . Now, working out the effect of this

operator on any field ψ transforming in the rep r, one finds

[Dµ, Dν ]ψ = ig tar(∂µA
a
ν − ∂νAaµ − g fabcAbµAcν)ψ (18)

:= ig tarF
a
µνψ ,

where F a
µν is defined to be the expression in the first line. This result gives us precisely what

we want: the commutator of these two differential operators does not involve any derivatives
of ψ at all, it transforms in a reasonable way, and it contains the pieces we want to build a
vector boson kinetic term.

A reasonable gauge-invariant kinetic term for the gauge fields is therefore4

L ⊃ − 1

4(ig)2T2(r)
tr([Dµ, Dν ][D

µ, Dν ]) (19)

= − 1

4(ig)2T2(r)
(ig)2F a

µνF
b µν tr(tart

b
r)

= −1

4
F a
µνF

aµν .

4This is gauge invariant due to the cyclicity of the trace: tr(UMU−1) = tr(M).
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Note that even though we used a specific representation to define the gauge kinetic term, the
third line of Eq. (19) shows that it can be written in a way that is representation-independent.

In all the discussion here, we have cobbled together a sensible gauge-invariant Lagrangian
by fiddling around. However, a slightly more careful treatment shows that the matter-gauge
couplings we have obtained are essentially unique. In other words, the requirement of gauge-
invariance completely fixes the structure of the gauge interactions. As in QED, this is why
it makes sense to think of gauge-invariance as the fundamental underlying feature. Also like
in QED, gauge-invariance is to be treated as an equivalence relation rather than a genuine
symmetry.

3 Computing with Non-Abelian Gauge Theories

Based on the discussion above, we are now able to write down the Lagrangian for a gauge
field and a set of fermions ψ transforming in a representation r of the (possibly non-Abelian)
gauge group G.5 The kinetic and gauge-matter interaction terms are

L = −1

4
(F a

µν)
2 + ψ̄iγµDµψ + . . . (20)

Additional terms can include matter-matter interactions and higher-dimensional operators
provided they are consistent with gauge invariance. It is also straightforward to add other
fermion species transforming under different represenations of the gauge group. The form of
the covariant derivative operator implicitly depends on the representation of the field upon
which it acts, and is given by

ψiγµDµψ = ψ̄iγµ(∂µ + igAaµt
a
r)ψ, (21)

where tar are the generators of the representation r under which the field ψ transforms. Note
that tar = 0 when r is the trivial representation. This implies that a field transforming under
the trivial representation of a gauge group does not couple to the gauge boson, and is said
to be uncharged. Expanding out the gauge kinetic term, one obtains

−1

4
(F a

µν)
2 = −1

4
(∂µA

a
ν − ∂νAaµ)2 (22)

+
1

2
g fabc(∂µA

a
ν − ∂νAaµ)AbµAcν − 1

4
g2fabcfadeAbµA

c
νA

dµAeν .

The first term is evidently the kinetic term for the vector, while the second two terms are
gauge boson self-interactions induced by the non-Abelian nature of the gauge group; this is
perhaps the most important consequence of having a non-Abelian group. These expressions
also reduce to the Abelian case if we set fabc → 0 and tar → Q, where Q is the U(1) charge
of the field ψ.

Starting from Eq. (21) and Eq. (22) we can derive all the Feynman rules for gauge
interactions in a non-Abelian gauge theory. The final result is very nearly identical to

5In the homework you will learn how to add charged scalars to the theory.
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QED with some additional group theoretic factors for decoration. However, there are a few
important differences that must be taken into account.

In order to obtain a sensible quantum propagator for the gauge field, it is usually necessary
to choose a specific gauge.6 A very popular family of gauge choices goes by the name of
Rξ, with each choice in the family characterized by a constant parameter ξ. This leads to a
vector propagator for Aaµ → Abν of

Dab
µν(p) =

i

p2
δab
[
−ηµν + (1− ξ)pµpν

p2

]
. (23)

The corresponding Feynman rule is shown in Fig. 1. Some popular ξ values are the Landau
gauge with ξ = 0, and the Feynman-’t Hooft gauge with ξ = 1. Any observable quantity
must be independent of ξ due to the requirement of gauge invariance. This can be a useful
way to check complicated calculations.

A full quantum derivation of the Rξ-gauge propagator of Eq. (23) also leads one to include
an additional set of massless Faddeev-Popov ghost fields transforming under the adjoint rep
of the gauge group. Ghost fields have the unusual property of being anti-commuting Lorentz
scalars. (Typically, even-spin fields (bosons) are commuting while odd-spin fields (fermions)
are anti-commuting.) They do not represent physical particle excitations.7 Instead, ghost
fields play the role of “negative degrees of freedom” in Feynman diagram calculations to
cancel off the gauge redundancy of the vector gauge fields. In practice, this means that
ghost fields only appear as intermediate states in loop diagrams, and never appear as on-
shell external states in a physical process. With one additional minor requirement to be
discussed below, this implies that we can completely ignore the ghost fields as long as we
stick to tree-level processes.

The propagator of a fermion field is nearly identical to the QED case. For ψi → ψj
(where i and j are the indices of the rep), we have

Dij(p) = δij
i(p/+m)

p2 −m2
. (24)

Similarly, for a charged complex scalar φi → φj,

Dij(p) = δij
i

p2 −m2
. (25)

We illustrate the corresponding diagrams in Fig. 1.

Vertex factors are straightforward to derive from Eqs. (21,22). The vertex corresponding
to the fermion-vector ψj → ψi + Aaµ interaction is

VffG = −ig (tar)ijγµ. (26)

6 The same is true for QED, but there we can get away with ignoring the implications when computing
Feynman diagrams for some slightly subtle reasons.

7 Ghosts also come up in QED and other Abelian gauge theories, but since the adjoint rep of such theories
is trivial, they do not couple to anything and can be ignored when computing Feynman diagrams.
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+ ( 1 −    ) p  p  / p

2 2i(p + m)

µ,a

pi j

µ,a

µ,a ν,p b
p

2

µ,a

ν, b

cρ,

cρ,ν, b

σ, d

γ µ−ig t ij
a

Internal Photon

Vff Vertex

Internal Fermion

i

i

j

V3G Vertex
− g f    [ ... ]

−δ µνη
ab ]ξ

p

p

pa
c

b

abc

νµ
2

2− i g  [ ... ]V4G Vertex

[

(p  − m  )

Figure 1: Feynman rules for a non-Abelian gauge theory.

Notice how the indices on the generator matrix match up with the representation indices on
the fermions. There are also three- and four-point gauge self interactions. For AaµA

b
νA

c
ρ we

have

V3G = −g fabc [ηµν(pa − pb)ρ + ηνρ(pb − pc)µ + ηρµ(pc − pa)ν ] , (27)

where pa,b,c are the incoming momenta carried by the vectors Aa,b,cµ,ν,ρ at the vertex (see Fig. 1).
For the AaµA

b
νA

c
ρA

d
σ vertex we get

V4G = −ig2[fabef cde(ηµρηνσ − ηµσηνρ)
+ facef bde(ηµνηρσ − ηµσηνρ) (28)

+ fadef bce(ηµνηρσ − ηµρηνσ)].

Again, take a look at Fig. 1.

Feynman diagram calculations in non-Abelian gauge theories are very similar to those
in QED up to some additional group theoretic factors and the gauge field self-interactions.
As in QED, one builds up an amplitude by writing down all the Feynman diagrams for the
process. Each diagram has a numerical value which is constructed by tracing backwards along
fermion lines, putting in internal propagators and vertex factors, and adding the initial- and
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final-state polarization vectors and fermion spinors. The main complication is that one must
also keep track of non-Abelian group theory factors. For example, each gauge boson line has
an adjoint index associated to it while each charged fermion or scalar line transforming in
the rep r has an index corresponding that rep.

The amplitude that is computed has specific external spin states, vector polarizations,
and group theory values. In most cases we want unpolarized cross-sections that are summed
over all distinct final states and averaged over all distinct initial states. The fermion spin
and vector polarization parts are nearly identical to QED, but now we also have to sum
over the distinct states in a given rep. For example, the amplitude for a process involving
ψj + X → ψi + Y will take the form Mij, where i and j are indices for the rep of ψ. The
squared and summed matrix element for the process will then involve

“|M|2′′ = 1

d(r)

∑
i,j

M∗
ijMij, (29)

where d(r) is the dimension of the rep of ψ.

e.g. 1 ψψ̄ → χχ̄

Suppose ψ and χ are massless fermions transforming under the reps rψ and rχ of the
non-Abelian gauge group G. The leading Feynman diagram for this process is given in
Fig. 2. The amplitude is

−iM = −ig2(tarψ)ij(t
b
rχ)pq

δab
p2

(ū3γ
µv4)(v̄2γ

νu1)
[
−ηµν + (1− ξ)pµpν/p2

]
. (30)

Here, p = (p1 + p2) = (p3 + p4), and the subscripts label the momenta of the spinors (with
spinor indices contracted). Squaring and summing/averaging the matrix element, the spin
part comes out just like in the (e+e− → µ+µ−) example we looked into previously in QED
(and one finds that the ξ-dependent part does not contribute in the end). There is,
however, a new group theory piece. The net result is

“|M|2′′ = (GT )
8g4

p4
[(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3)] (31)

with the group theory factor given by

(GT ) =
1

d2(rψ)

∑
i,j

∑
p,q

(tarψ)∗ij(t
c
rψ

)ij(t
b
rχ)∗pq(t

d
rχ)pq δabδcd

=
1

d2(rψ)
tr(tarψt

c
rψ

) tr(tarχt
c
rχ) δabδcd (32)

=
d(A)

d2(rψ)
T2(rψ)T2(rχ).

In the second line we have made use of the Hermiticity of the ta to write (ta)∗ = (ta)t while
in the third line we have used δacδbdδabδcd = δcc = d(A). A useful trick for obtaining the
gauge matrix factors is to trace backwards along the “gauge flow” in the diagram, much
like one traces backwards along fermion lines to get the spinor factors.
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Figure 2: The leading Feynman diagram for ψψ̄ → χχ̄.

Relative to QED (or other purely Abelian gauge theories), there is one additional com-
plication related to the polarization of external vector states. Recall that in QED, we were
able to use a polarization completeness relation to simplify the polarization sums:∑

λ

ε∗µ(p, λ)εν(p, λ) = −ηµν + (stuff you can ignore) (Abelian case) . (33)

The “extra stuff” here is related to the fact that there are only two distinct physical
polarizations for a massless vector, whereas four states would be needed for full completeness,
corresponding to a sum that produces ηµν alone. Fortunately, in Abelian gauge theories the
extra stuff always vanishes automatically when it is contracted with a physical amplitude
and can therefore be neglected. In the non-Abelian case it turns out that you can’t always
get away with ignoring the extra stuff. There are various ways of handling this, but in many
cases the easiest is to specify explicitly the two transverse polarization vectors εµ(~p, λ),
λ = 1, 2, and sum over them. You can choose these however you want provided they satisfy
the conditions

ε∗(~p, λ) · ε(~p, λ′) = −δλλ′ , (1,~0) · ε(p, λ) = 0, p · ε(~p, λ) = 0. (34)

For example, if ~p = pẑ, two popular choices are {(0, 1, 0, 0), (0, 0, 1, 0)} (linear polarizations)
and {(0, 1, i, 0)/

√
2, (0, 1,−i, 0)/

√
2} (right- and left-handed circular polarizations). Note

as well that gauge invariance implies that the vector boson is massless, so p is a lightlike
4-vector with p2 = 0 (as a 4-vector).

4 The Fundamental QCD Lagrangian

Quantum chromodynamics is the underlying theory of the strong force. It is a non-Abelian
gauge theory with gauge group SU(3). The gauge fields (of which there are 8 = 32 − 1
components) are called gluons Ga

µ. In addition, there are six fermionic quark fields, q =
u, d, c, s, t, b, each transforming under the fundamental 3 representation of SU(3). The
different quark fields are called flavours. For each flavour, the three components of the
3 representation are called colours: q = qi, i = 1, 2, 3. From the point of view of QCD,
there is nothing terribly fundamental about flavour while the colours are an essential part
of the underlying gauge symmetry structure. The terminology of flavour and colour is also
frequently applied to other non-Abelian gauge theories.
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Given what we know about non-Abelian gauge theories, we can write down the QCD
Lagrangian immediately:

L = −1

4
(Ga

µν)
2 +

∑
q=u,d,c,s,t,b

q̄(iγµDµ −mq)q, (35)

where Dµ = (∂µ + igst
aGa

µ) and mq is the mass of quark q. That’s it!
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