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Quantum Field Theory (QFT) is the best tool we know of to describe the physics of
elementary particles. It is the basic language used in elementary particle physics, superstring
theory, and many branches of condensed matter physics. Learning QFT has the reputation
of being difficult, but it is more accurate to say that it is time-consuming. Since I can’t cram
a whole year’s worth of material into a single class, I will try to give you a general flavour
of the topic. For a list of useful textbooks, take a look at Refs. [1, 2, 3,4, 5,6, 7]. I also
strongly encourage you to take a full QFT course at some point in your graduate career.

1 General Overview

QFT is nothing more than ordinary quantum mechanics formulated in a relativistically
invariant way and applied to continuous field systems. The only difference from the more-
familiar one-particle quantum mechanics is what we identify as the underlying degrees of
freedom, which in this case are the fields. It might seem strange to use continuous fields
to describe discrete objects like particles. When a field is quantized, however, there often
appear discrete quantum excitations that can be interpreted as particles. This interpretation
is justified a posteriori by its excellent agreement with experiment. On the other hand,
ordinary one-particle quantum mechanics doesn’t get along well with (special) relativity
because it does not account for particle creation and annihilation at high energies. Quantum
field theory avoids this problem, and reduces to one-particle quantum mechanics in the
appropriate limit. For a nice alternative point of view on why we use QFT to describe
elementary particles, read Ch.1 of Burgess & Moore [§].

We usually define a QFT in terms of an action that depends on a set of fields {¢;}. For
the cases of interest to us, the action can be written in the form

Slé] = / e L(60(x)). 1)

The function Z(¢;) is the Lagrange density, but we will usually just call it the Lagrangian.
Some comments about the action [2]:

e We will usually assume that ¢; — 0 and 9,,¢; — 0 as max{|¢|, |z, |y, ||} — oo so that
we can ignore total derivatives in the action: [ d*x9,F(¢;) = 0 for any polynomial
function F'(¢;). The vanishing of fields at the spacetime boundary is usually a necessary
condition for a given field configuration to have finite energy.

e S depends on x* only through the fields ¢;(z). This implies invariance under spacetime
translations.



S should also be invariant under Lorentz boosts and rotations. In general, both the
spacetime coordinate x and the fields ¢(z) transform under these transformations:
r — 2’ and ¢ — ¢'(2/). Applying this to the action and using d*z’ = d*z, Lorentz
invariance requires that Z(¢) — Z'(¢') = ZL(¢') up to total derivatives. In other
words, the Lagrangian after the Lorentz transformation must take the same functional
form as the original Lagrangian. A handy rule of thumb is that the Lagrangian will
be Lorentz invariant if all the Lorentz indices on the fields are properly contracted.

e The action is local, in that it depends only on functions (and derivatives) of fields at
the same spacetime point. (e.g. There are no terms like [ d*z [ d*y ¢(z)d(y) in the
action.) This is needed if we want our theory to be causal.

e Dimensions: [S] =0, [d*z] = —4, so we need [.Z] = +4.

S needs to be real for the theory to be unitary.

An action that satisfies these conditions can potentially give rise to a well-defined, Lorentz-
invariant QFT.

Let’s dig a bit more into the requirement of Lorentz invariance. To enforce it, it is
convenient (and possible) to organize our field variables into combinations that well-defined,
linear transformation properties under Lorentz transformations. These take the form

o — 2 (x) = A ¥ (2)

v

oalw) — Pa(a) = M) Sop(A2) (3)

where A defines the Lorentz transformation and M (A) is a transformation matrix on the
fields that depends on A. The matrices M(A) are said to form a representation of the
Lorentz group. Some well-known representations that we will see frequently are:

Scalar (s =0): ¢'(2') = ¢(x)

Fermion (s = 1/2'): ¢! (2') = M, *¢y(z) (The indices a,b = 1,2, 3,4 here are spinor
indices.)

Vector (s =1'): A (2') = A)A,(v)

Now, for a QFT with sufficiently weak interactions, each field (after some rearrangement) can
be identified with a specific type of particle. The Lorentz representation of the corresponding
field then dictates the spin (or helicity) of that particle species!

In practice, we want to use QFT to compute things that can be compared to experiment.
The standard technique for this is to make a perturbative expansion of the QFT around the
non-interacting free-field theory consisting only of quadratic (and lower) powers of the fields.
This involves three steps:

1. Start with the quadratic (and lower) terms in the Lagrangian and extract from them
the kinetic and mass terms.

2. For this, redefine the field variables to put the kinetic terms in canonical form and
diagonalize the mass matrices.



3. Add the terms higher than quadratic (in terms of the redefined and now-canonical /diagonal

fields) and identify the interactions they correspond to.

We will illustrate the first two steps for scalar, fermion, and vector fields below. With this
in place, we will add interactions and discuss how to compute things using Feynman rules.

2 Scalar Fields

The simplest kind of field is a real Lorentz scalar, for which the transformation matrix of
Eq. is trivial (i.e. the unit matrix):

¢(x) = ¢'(¢) = ¢(x) . (4)

This implies that they describe particles of spin s = 0 since nothing happens to them under
rotations. The basic quadratic Lagrangian for a real scalar field is [2]

_1 2_1 2,2
Z = 5(09)" = gm*e” (5)

where (0¢)? = n**9,¢0,¢. The first piece here is the kinetic term and the second is the mass
term. The kinetic term has a canonical normalization, corresponding to a momentum-space
propagator of i/(p® — m? + i€). According to the rules above, this Lagrangian describes a
single particle species of physical mass mppys = vm?. Adding cubic or higher-order terms
to the Lagrangian would introduce self-interactions between the ¢ particles.

e.g. 1. Non-canonical kinetic term
Suppose we have the Lagrangian

1 1
Z = 52(3@2 - §m2¢2 ) (6)

for some positive constant Z. For Z # 1, this deviates from the canonical normalization for
a real scalar because it leads to a propagator of iZ~!/(p* — m?/Z + i€). This can be
repaired by using different field variables, ¢(x) = Z~Y 25(:17), in terms of which the
Lagrangian becomes

1, .~ 1 ~
Z = 5(3@2 - §(m2/Z)¢2 : (7)
The kinetic term in terms of the new variable 5 is now canonical. Following our rules, the

physical mass of the corresponding particle is myppys = y/m?/Z. Note that this only makes
sense if Z > 0. For Z < 0, the theory is inconsistent.



e.g. 2. Multiple scalars and mass mixing
Suppose we now have n real scalars ¢; (i =1,2,...,n) with

1 1
Zz =5 ijn“”(aucbi@ycbj)—§(M2)z'j¢z¢j (8)
o 1 v t _1 t 2
= 0006 — S0 M

where Mizj is a real symmetric matrix and a sum over repeated indices (Lorentz and i, j) is
implied. In the second line, we have simply rewritten the first line in terms of a matrix
notation with ¢' = (¢1,...,¢,) is an n-component row vector. The kinetic terms of all the
scalars are canonical, but in general the n x n matrix M? is not diagonal. Fortunately, any
real symmetric matrix can be diagonalized by an orthogonal transformation,

O'M?*O = diag(m?,...,m?) for some eigenvalues m?. We can use this fact to make sense
of the theory by transforming to nicer field variables gg Defining ¢ = (’)gg and plugging into
the original Lagrangian, we find

L opn ~m~ 1~ ~

L = S0"0,0'0,0 — S diag(mi, ..., m})o (9)
1, ~ 1 ~
= 3 [506)* — 5m3()?

> |38~ 5mi@
Thus, we obtain a theory with n independent scalar particles with physical masses
M phys = \/m2. Note that this only makes sense if all the eigenvalues m? are non-negative;
we will learn how to deal with negative eigenvalues later on. More generally, with n real
scalars the kinetic term can also have a mixing matrix Z,; (instead of the d;; we had above).
To deal with this, first diagonalize the kinetic term, then rescale each of the fields to get
canonical kinetic terms for all fields, and finally diagonalize the resulting mass matrix.

e.g. 3. Complex scalar field
Consider a theory with two real scalars ¢; and ¢, with the same mass. In this case, we can
rewrite the basic quadratic Lagrangian in terms of a single complex scalar

D = (¢1 + i) /V2:

2 = 51000 + @8] — ym* (6 +6)) (10)
= |02 —m?|of? (11)

where [0®|* = n**9,®* 9,®. This form, without the factor of 1/2, is the canonical kinetic
form for a complex scalar with physics mass mypys = v/m2. The choice of representing the
degrees of freedom in terms of two mass-degenerate real fields or one complex field is a
matter of convenience. However, when the theory has a symmetry under rephasing,

® — e~ ®, the complex form is usually nicer.



3 Fermion Fields

Particles with odd-integer spins are fermions. The most familiar example in four spacetime
dimensions is the four-component Dirac fermion, transforming under Lorentz according to

ta(x) = Yo (2') = [M(A)]asth() , (12)

where a, b= 1,2, 3,4 are called Dirac indices, M(A) is a 4 x 4 matrix, and summation over
the repeated Dirac index b is implied. These four components of i are related to the two
spin states of a spin s = 1/2 particle plus the two spin states of its distinct antiparticle.

Before we write the basic Lagrangian for a Dirac fermion, let us introduce some nota-
tion [2]. First, generalize to the 2 x 2 Pauli matrices to

=1, o =" (13)
with
01:((1)[1)>, 02:(?_()i>, 03:<é_01>. (14)
Recall that
olod = 691 + ik (15)
Let us also define
ot =(L,5), o'=(1-7). (16)

In terms of these, we define the 4 x 4 Dirac matrices in the so-called chiral representation by

,Yu:(;)u "0”) . (17)

These satisfy the familiar relation

{7y, "} =29" . (18)
We will also define

¢ euu)\ﬁ

4

5 01 2.3 _

Y=y =y Yy YV IAVE - (19)

In the chiral representation, one finds

752(_(]H§). (20)

We will also encounter the chiral projectors P, = (1 —~°)/2 and Pr = (1 +~°/2).



The basic Lagrangian for a Dirac fermion is

L =iy 0,0 — m (21)

where the first term is the kinetic piece in canonical normalization and the second is a mass
term with my,, = |m|. Note that this is written in matrix notation with 1 = 1T7°. Using
the properties of the Lorentz transformation matrices [M(A)]qp, it can be shown that this
Lagrangian is Lorentz invariant.

It is instructive to rewrite the basic Lagrangian of Eq. @) in a couple different ways.
First, we can label the Dirac component structure explicitly, which gives

L = ¢; (’YO)ab’%fcauwc —m 1/12 (70)a0¢c s (22)

where repeated indices are summed over. This form is messy, and is not usually written out
in this level of detail, but it is good to know how the Dirac indices connect up.

A second useful rewriting of Eq. m is in terms of the chiral components of ¢, inspired
by the 2 x 2 block structure of the gamma matrices. Let us define

zp:(;ﬁ;) (23)

In a mild abuse of notation, we will also write

0
¢L5:PL¢:(¢L>> ¢R1=PR¢=( ) (24)
0 Vg
In terms of the chiral components 1, and g, the basic Lagrangian of Eq. 1} becomes

£ = ELW’@M/JL + %i’y“ﬁuw}z —m (EL@ZJR + ER@//L) . (25)

Note that the kinetic term does not mix the chiral components but the mass term does. In
the absence of the mass term, it is possible to write a consistent theory with only one or
the other of the chiral components. The labels L and R correspond to the fact that in the
massless limit, the ¢, field describes a fermion of left-handed helicity plus an antiparticle of
right-handed helicity, where helicity refers to the angular momentum orientation relative to
the direction of motion. Similarly, g describes a particle with right-handed helicity plus an
antiparticle of left-handed helicity.

4 Vector Fields

A vector field is one that transforms like a Lorentz 4-vector:
Au(r) = AL (2) = AJA(2) (26)

Even though A,(z) has four independent components, this field does not describe four
independent particles. A massive vector corresponds to a spin s = 1 particle species with



three components. For a massless vector, there are only two independent helicities. Either
way, the vector field has more components than physical states, so not all the components are
physically independent [9, 10]. We want a Lorentz-invariant Lagrangian that only describes
the physical excitations we want.

The basic Lagrangian we will use for vector fields is

fz—iﬂﬁw+%mMMW, (27)
where F,, = 0,4, — 0,A, is called the field strength. The first piece is a canonically
normalized kinetic term and the second is a mass term corresponding to a physical mass
Mphys = v/m2. The kinetic term here might look a bit funny compared to what we had for
scalars, but it becomes more appealing after integrating by parts (and dropping the surface
term in the action):

1
L = —§A“(—nu,,82 + 0,0, — Ny m?)A” . (28)

Except for and overall sign, the 0,0, term, and the Lorentz indices, this looks just like what
one would obtain for the scalar field Lagrangian of Eq. @ after integrating by parts.

In the massive case, m # 0, the four-component object A" contains spin s =0 and s = 1
pieces, 4 = 1 4+ 3. The s = 0 part corresponds to configurations of the field that can be
written as a derivative of a scalar, A, = 0,¢ for some ¢. Since we already know how to
describe scalar fields and want to focus on the genuine s = 1 part, we would like to find nice
Lorentz-invariant way to remove the s = 0 piece. It turns out that the kinetic term does this
already, which can be seen easily using the form of the Lagrangian in Eq. Q2_8D Specifically,

(N0 — 0,0,) ¢ = 9,(0°—9%)p = 0, (29)

for any 0,¢ configuration. While the kinetic term removes the s = 0 part, the mass term
does not. For this we need to impose a constraint on the vector, and a convenient one is

D A" =0 . (30)

If A, = 0,¢, this implies 9°¢ = 0. With this in hand, let us now plug A, = 9,¢ into the
mass term and integrate by parts:

m’n" (0,0)(0,0) — —m*¢(8°¢) = 0. (31)

This vanishes thanks to our constraint. Thus, the form of the Lagrangian of Eq. q2_7D together
with the constraint imply that the theory only describes s = 1 excitations.

The situation for the massless case is a bit more subtle. On the one hand, no constraint
is needed to remove s = 0 configurations from the Lagrangian. But on the other, a massless
spin “1” particle (such as the photon) only has two physical helicity degrees of freedom
rather than three, so we're still stuck with more things than we want. It turns out that the
solution here is both subtle and deep. The crucial observation is that the massless theory
has an invariance under

A, — A+ 0, (32)
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for any smooth «(z). If we demand that any two configurations related by such a transfor-
mation are physically equivalent, we will remove the unwanted extra degree of freedom, and
the theory will describe two physical helicity states. Note that this invariance should remind
you of classical electromagnetism, where A* = (¢, ff) is identified with the scalar and vector
potentials. Recall that these objects do not correspond to unique physical configurations.
Instead, it is the electric and magnetic fields derived from them that are unambiguous and

physically relevant. We will discuss this gauge invariance in more detail later in the course.

5 Interactions and Feynman Rules

Thus far we have concentrated on the quadratic parts of QFT Lagrangians, and we showed
how they can be used to identify the physical particles in the theory. Higher-order terms in
the Lagrangian correspond to interactions among these physical excitations. Such interac-
tions lead to particle scattering and decay, which correspond to the main physical observables
relevant for the study of subatomic particles. A powerful tool for computing these observables
are Feynman rules, and we discuss how to derive and apply them here.

A given QFT is typically defined by its action (and sometimes a few more things we do
not need to worry about for now). The Feynman rules for a theory can be derived from its
Lagrangian. There are two main steps. First, following the procedures derived above, one
identifies the physical excitations of the theory (e.g. particles) in the absence of interactions
from the quadratic terms in the Lagrangian. These fix the propagators for internal legs in
a Feynman diagram as well as the polarization vectors for the external legs of the diagram.
And second, the Lagrangian terms above quadratic order are identified with interactions, and
vertex factors are derived for each of them. Such vertices connect the internal and external
legs in Feynman diagrams. Feynman diagrams correspond to an expansion in powers of these
vertices.

With the Feynman rules in hand, they can be used to compute the transition matriz
element (also called the scattering amplitude) M for a given process. Recall from notes-00
that such matrix elements are squared and integrated over to obtain cross sections and decay
rates. Note that a given matrix element depends on the particle types, momenta, and spins
of all the particles in the initial and final states. Once these are specified, computing the
corrsponding amplitude involves the following steps:

1. Draw all possible Feynman diagrams up to the desired level of expansion in powers of
the interaction vertices. (We will mostly stick to the lowest non-trivial order here.) To
do so, fix the external legs and connect them up in all possible ways using the vertices
of the theory and possibly some internal legs.

2. For each diagram, use the Feynman rules to find the mathematical expression for each
diagram. For closed loops, integrate over internal loop momentum and add a factor of
(—1) if it is a fermion loop.



Incoming Scalar p%‘ 1

Outgoing Scalar L 1

Internal Scalar P i/(p2 —nt)
Vertex . ia

Figure 1: Feynman rules for the A¢* theory.

3. Sum the expressions for each of the diagrams. Include any necessary symmetry factors
for identical initial or final states. In the case of fermions, diagrams that differ only by
the interchange of two identical fermion lines come have a relative factor of (—1).

4. The result of all this is (—i) times the matrix element.

All this is abstract, so it will help to illustrate these procedures with some specific examples.

e.g. 4. \¢* Theory
Consider the theory of a real scalar field ¢ with Lagrangian

A

_ Logr - Lpzgr 2
Z = 5(09)" — gm¢” — 4

ot (33)

For A\ = 0 this corresponds to a real scalar (s = 0) field with mass m. The quartic term
defines a self-interaction among ¢ particles and the dimensionless coupling A determines its
strength. The corresponding Feynman rules are shown in Fig. mm

The most simple process in this theory is ¢(p1) + ¢(p2) = ¢(p3) + ¢(p4) scattering. In
Fig. 2| we show the contributions to matrix element at linear and quadratic order in A. The
corresponding contributions to the matrix element are

M=M;+My+ ... (34)
with the first term corresponding to the order \! diagram
—iM; = —i) (35)

and the second term corresponds to to the order \? diagrams,

A2 d*q 1 1
—iMy = — 36
R 2 /(27)4 q? —m? {(p1+p2—|—q)2—m2 (36)

1 1
+
(pr—p3+q)?—m?  (p1—ps+q)?—m?

I Note that we are being sloppy and omitting the 1¢ factors in the propagators here.
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Figure 2: Feynman rules for the A\¢* theory.

Note that there are infinitely many diagrams and that we have arranged the Feynman
expansion in powers of . For A < 1, we expect M ~ M, so that the leading order \!
estimate of the matrix should be a good one. When this is not satisfied, A 2 4, the
expansion in powers of A, and the Feynman diagram approach itself, is no longer useful. In
fact, when this occurs the basic excitations of the theory may no longer match up in an
obvious way with those of the free theory (A — 0). We will see an example of this when we
get to the strong force later in the course.

e.g. 5. Quantum Electrodynamics (QED)

This is the theory of charged fermions interacting with the photon. It consists of a massless
vector for the photon and a set of charged fermions. The Lagrangian is [2]

o _}1 Fyus ™ 4 3 i (9, + ieQuA,) = mlisy (37)

Sometimes we will write D, = (9, + ieQ;A,,), which is called a covariant derivative. The
sum on ¢ here refers to a sum over all charged particles in the theory. For now, we will
assume that there are only electrons (m. ~ 0.511 MeV) and muons (m, ~ 105.7 MeV).
The only interactions in the theory are between the fermions and the photon with strength
determined by the dimensionless quantity e(). For electrons and muons we have () = —1 as
well as the low energy coupling value

o2
=— ~ 1/137. 38
o=t~ (38)
Fortunately, this is small and thus we expect an expansion in Feynman diagrams to be

useful for QED.

From this Lagrangian one can derive the Feynman rules given in Fig. 3. The quantities
u(p, s) and v(p, s) here are 4 x 1 fermion and anti-fermion spin vectors for 4-momentum p

10



P

Incoming Fermion S_*s . u(p,s)

Incoming Anti—Ferm § %pﬁ—- v(p,s)

Outgoing Fermion e Ps u(p,s)

Outgoing Anti—Ferm e P s v(p,s)
Incoming Photon M, 7&\}\)/\/% €. (p,\)
Outgoing Photon U\fgf\ﬁu’ A a:'f (p,A)
Internal Fermion 2. i(p+ m)/ (P’ —nf
Internal Photon “q/\lf)\/\f-v -M,y p’

Vertex “m< -ieQY"

Figure 3: Feynman rules for QED.

D,

Figure 4: Leading Feynman diagram for ete™ — utpu~.

and spin state s, with @ = ufy°. We have also written = p,y*. For photons, €,(p, ) is
the polarization 4-vector for the polarization state A. Recall that photons have two
independent transverse polarizations.

A simple process in this theory is e (p1, s1) + €*(p2, s2) = ™ (ps, $3) + " (p4, s4). The
single Feynman diagram for the process at leading order in « is shown in Fig. 4, Following
the Feynman rules for QED, the amplitude is

. . I _ _
—IM = Z€2Q6Qu2§(U3’Y”U4)(U2’YVU1)77W- (39)

Here, p = (p1 + p2) = (p3 + p4), the subscripts label the momenta of the spinors, and the
spinor indices are contracted implicitly.

Deriving Feynman rules for other theories follows the same general prescription. In
particular, the propagators for internal legs and polarization vectors for external legs are
universal for a given particle type. The only new thing to do (after the theory has been
put into canonical form and the particle types in the free limit have been identified) is

11



determine the interaction vertices. As long as the interaction terms in the Lagrangian do
not contain any derivatives there is a simple prescription to do so. The vertex with ngy
ingoing or outgoing ¢ scalars, n, ingoing 1 fermions (or outgoing antifermions), n,; outgoing
¥ fermions (or ingoing antifermions), and n 4 ingoing or outgoing A* vectors is schematically

v H(netnytngtna) P ’ (40)
ertex = ¢ X S—
(0)"e(9)" (9)" (DA™ | ymymjmazo

This looks messy, but it is simple to do in practice. It can be derived from the path integral
formulation of QFT [3, 6].

For the A¢* theory, the only non-vanishing vertex has four ¢ fields. Applying this

prescription,
, o Ay
X —— | ——
(09)* \ 4!

which matches the result above. Note that all other possible derivatives vanish: taking more
than four derivatives obviously gives zero while taking fewer than four leaves leftover powers
of ¢ that vanish when it is set to zero.

— —i), (41)
¢=0

Going next to QED, the only vertex corresponds to
83
(0A)(0¥)(0v

Again, this matches what we had above. Note also that the vector index of A* in the
derivative matches the value in the vertex. This follows from

0
OAH
since the different components of A* are to be treated as independent fields. There is also

something similar going on for the fermions, which carry Dirac indices, but I have hidden
them for now.

7 X

= —ieQ " . (42)

Z
) h=1p)=A=0

A =5, (43)
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