PHYS 528 Homework #7

Due: March 15, 2024, 12pm PDT

- 1. Dirac and Majorana fermions.
 - a) The electron in QED is a Dirac fermion consisting of independent e_L and e_R LH and RH 2-component pieces (and their conjugates). How do these transform under $U(1)_{em}$ gauge transformations? Rewrite both as 2-component LH fermion fields (and their conjugates). How do these two independent LH fermion fields transform under $U(1)_{em}$?
 - b) A 4-component fermion ψ is said to be *Majorana* if its two 2-component pieces are derived from the same 2-component LH fermion. Show that this implies that (up to a possible phase)

$$\psi^c = \psi$$
, where $\psi^c = i\gamma^2\gamma^0(\bar{\psi})^t$

c) A Majorana mass for a general 4-component fermion ψ is defined to be

$$\mathscr{L} \supset -\frac{1}{2}M\,\overline{(\psi^c)}\psi~.$$

Express this operator in terms of the 2-component pieces of $\psi = (\chi, \bar{\xi})^t$. Note: do not assume that ψ is a Majorana fermion.

- d) Prove that a Majorana mass is forbidden if the theory has a U(1) symmetry under which ψ transforms non-trivially.
- e) A pair of LH 2-component fermions χ and ξ are said to be vector-like if they transform under conjugate unitary representations of the underlying (non-Lorentz) symmetry group of the theory relative to each other. (*i.e.* $\chi \to e^{i\beta^a t_r^a}\chi, \xi \to e^{i\beta^a t_r^a}\chi$ $e^{-i\beta^a t_r^{a*}\xi}$ with Hermitian t_r^a , real β^a .) Show that this allows a standard Dirac mass term $m\psi\psi$ for the 4-component fermion $\psi = (\chi, \xi)$.
- 2. Z decays in the SM.

Compute the partial decay widths of the Z^0 into pairs of each of the SM fermions. You may ignore the fermion mass whenever it is smaller than one tenth the Z^0 mass: $m_f < m_Z/10$. Note that the branching fraction of a particular decay mode with partial width Γ_i is BR_i = Γ_i / Γ_{tot} . Plug in numbers and compare to data.

Hint: data can be found at http://pdglive.lbl.gov/.

Hint: there are lots of terms, but many of them vanish!

Hint: $P_L P_R = 0$, $P_L^2 = P_L$, $P_L \gamma^{\mu} = \gamma^{\mu} P_R$, $tr(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^5) = -4i\epsilon^{\mu\nu\rho\sigma}$. *Hint: an* $\epsilon^{\mu\nu\rho\sigma}$ *term can only be non-zero if it connects with* **four** *independent* 4-vectors. *Hint:* don't forget to take colours into account.

Note: decays to the light u, d, and s quarks can't be distinguished from each other experimentally. For these, compare to the data for $(u\bar{u} + dd + s\bar{s})/3$. Note: neutrinos count as "invisible" here.

3. Invisible Z decays.

Suppose the SM contains a new "invisible" LH chiral fermion with a coupling strength g_L to the Z^0 . (That is, the Lagrangian interaction is $\bar{\psi}_L \gamma^{\mu} Z_{\mu} g_L \psi_L$.) Derive the upper limit on the size of the coupling g_L as a function of the fermion mass m_{ψ} from the requirement that its contribution to the invisible decay width of the Z^0 be less than $\Delta \Gamma_{inv} < 2$ MeV.

Hint: you should be able to reuse the calculation from question #2*.*