PHYS 528 Homework #4

Due: Feb.25, 2021 Mar.2, 2021

- 1. Non-Abelian gauge invariance.
 - a) Work out the details and show explicitly that the covariant derivative we discussed for the non-Abelian case transforms according to $D_{\mu}\psi \to U_r(D_{\mu}\psi)$. Hint: $0 = \partial_{\mu}(\mathbb{I}) = \partial_{\mu}(U_rU_r^{-1}) = \partial_{\mu}(U_r^{-1}U_r)$ with $U_r^{-1} = U_r^{\dagger}$.
 - b) We had that $A_{r\mu} := A_{\mu}^a t_r^a \to A'_{r\mu}^a t_r^a = U_r A_{r\mu} U_r^{-1} + \frac{1}{ig} U_r \partial_{\mu} U_r^{-1}$. For $U_r = e^{i\alpha^a t_r^a}$, work out the corresponding transformation of the coefficient functions A_{μ}^a to linear order in the α^a parameters to derive the result of Eq. (9) in notes-03 explicitly. Does this result depend on the specific representation chosen? (i.e. would the same transformation of the A_{μ}^a coefficients also work for other representations?)
 - c) Fill in the details of the derivation of $[D_{\mu}, D_{\nu}]\psi = igt_r^a(\partial_{\mu}A_{\nu}^a \partial_{\nu}A_{\mu}^a g f^{abc}A_{\mu}^bA_{\nu}^c)\psi$, for ψ transforming under the rep r of the gauge group.
 - d) Write out the covariant derivative acting on a field transforming under the adjoint rep of the non-Abelian group G in terms of the structure constants f^{abc} .
- 2. Scalar decay to vectors.

Consider the interaction

$$-\mathcal{L} \supset \frac{1}{\Lambda} h V_{\mu\nu} V^{\mu\nu} , \qquad (1)$$

where h is a real scalar of mass m_h , $V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$ for some vector boson V_{μ} , and $\Lambda \gg m_h$ is some very large mass scale. This interaction allows the decay $h(p) \to V_{\mu}(k_1) + V_{\nu}(k_2)$, for which the amplitude is

$$-i\mathcal{M} = -\frac{2i}{\Lambda} (k_1^{\mu} \epsilon_1^{\nu} - k_1^{\nu} \epsilon_1^{\mu}) (k_2^{\alpha} \epsilon_2^{\beta} - k_2^{\beta} \epsilon_2^{\alpha}) \eta_{\alpha\mu} \eta_{\beta\nu} , \qquad (2)$$

where ϵ_1 and ϵ_2 refer to the polarizations of two outgoing vectors.

- a) If V_{μ} is massless, there are two physical polarization states and a built-in gauge invariance. Compute the summed and squared matrix element " $|\mathcal{M}|^{2}$ " relevant for the total unpolarized decay rate in the h rest frame using the partial completeness relation $\sum_{\lambda} \epsilon^{\mu}(k,\lambda) \epsilon^{\nu*}(k,\lambda) = -\eta^{\mu\nu} + (stuff\ you\ can\ ignore)$, just like what we used for external photons in QED.
- b) A second way to compute the summed and squared matrix element " $|\mathcal{M}|^{2''}$ is to specify external polarization vectors and add up the results. Do this here using the explicit polarization vectors discussed in notes-04 and summing over all the possibilities.

Hint: since the initial state is at rest and has no spin, you can choose the \hat{z} axis to lie along the direction of the first outgoing vector, $\vec{k}_1 = ||\vec{k}_1|| \hat{z}$.

c) Suppose instead that the vector V_{μ} is massive, with mass m_{V} . This implies that it has three physical polarization states. The corresponding polarization 4-vectors should satisfy

$$\epsilon(k,\lambda) \cdot \epsilon^*(k,\lambda') = -\delta_{\lambda\lambda'}, \qquad k \cdot \epsilon(k,\lambda) = 0.$$
 (3)

For $\vec{k} = ||\vec{k}|| \hat{z}$, find a set of three 4-vectors that satisfy these conditions. You should be able to identify two of them as *transverse*, and one as *longitudinal*.

- d) Use these three polarization 4-vectors to compute the summed and squared matrix element " $|\mathcal{M}|^{2''}$ for $h \to V_{\mu}V_{\nu}$ in the rest frame of the decaying scalar. Also, compare the squared matrix element for longitudinal final states to those for transverse final states.
- 3. $AA \rightarrow \psi \bar{\psi}$ in a general non-Abelian gauge theory with ψ transforming in the rep r.
 - a) There are two Feynman diagrams for this process: one with the vector in the s-channel and one with the fermion in the t-channel. Find the contribution to the amplitude for $A^a_\mu A^b_\nu \to \psi_i \bar{\psi}_j$ from the s-channel diagram alone. Hint: the three-point vector interaction is defined for ingoing momenta on all legs. For an outgoing momentum on a leg, just swap $p \to -p$ on that leg.
 - b) Square this contribution and sum it over all final states and average over initial states (including spin and group), working in the centre-of-mass (CM) frame. Hint: in the CM frame with vector momenta p_1 and p_2 , $(p_1 \cdot \epsilon_2) = 0 = (p_2 \cdot \epsilon_1)$. Also, $(p_1-p_2)\cdot(p_1+p_2) = 0$ for massless vectors. Use this to simplify the amplitude enormously before squaring.
 - c) Write down the contribution to the amplitude $A^a_\mu A^b_\nu \to \psi_i \bar{\psi}_j$ from the t-channel diagram alone.
 - d) Work out the group theory factor corresponding to the t-channel diagram when one squares this contribution and sums/averages it over all final/initial states.