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We turn next to the serious business of calculating cross sections and decay rates. The
underlying material needed for this was covered in the previous notes. Here we cover the
more mechanical aspects of extracting theoretical predictions that can be compared with
experiment.

For a given theory, the general strategy is to identify the physical excitations, derive
the Feynman rules, and apply them to obtain the matrix element M for the processes
of interest. Squaring the matrix element and putting it into the cross section (or decay)
formulas of notes-00 (which we reproduce here in Appendix 3) then allows us to find the
corresponding physical observables. The best way to see how this works is through explicit
examples, and this is how we proceed here.

Before getting to these examples, let us mention an important delta function identity
that we will use frequently in evaluating cross sections. For any nice functions f(x) and
g(x),

∫ b

a

dx δ
(

f(x)
)

g(x) =
∑

i

∫ b

a

dx δ(x− xi)

∣

∣

∣

∣

1

f ′(x)

∣

∣

∣

∣

g(x) , (1)

where the sum runs over all values xi for which f(xi) = 0.

1 Example: φφ→ φφ in λφ4 Theory

Consider the process φ(p1)+φ(p2) → φ(p3)+φ(p4) in the λφ4 theory discussed in notes-01.
Recall that the scattering matrix element at leading order in the coupling λ was just

−iM = −i λ . (2)

It is independent of the initial and final momenta and there are no spins to deal with. For
scattering in the centre-of-mass (CM) frame, defined by ~p1 + ~p2 = ~0, we can align the z-axis
with the initial p1 direction so that the initial 4-momenta take the form

p1 = (E, 0, 0, p) , p2 = (E, 0, 0,−p) , (3)

where E =
√

m2 + p2.

To compute the scattering cross section, we apply the formula of Eq. (27) collected in
the appendix. Before trying to get the final result, it is useful to assemble the pieces that
go into it. The symmetry factor in this formula is S = 1/2! since there are two identical
particles in the final state. The relative velocity is

v =
√

(p1 · p2)2 −m4
/

E2 (4)

= 2 p/E .
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This goes to v → 2 for p ≫ m and v ≃ 2 p/m for p ≪ m. Moving next to the integrals,
it turns out that most of them can be done using the overall 4-momentum delta function.
Explicitly,

δ(4)(p1 + p2 − p3 − p4) = δ(E1 + E2 −E3 − E4) δ
(3)(~p1 + ~p2 − ~p3 − ~p4) . (5)

Thus, the 3-momentum part of the full delta function can be used to do one of the d3pi
integrals. Let us use it to eliminate the d3p4 integral. Doing so, we must set

~p4 = ~p1 + ~p2 − ~p3 = − ~p3

where in the second equality we have used the fact that we are working in the CM frame.
Since the two outgoing masses are equal, this also implies that E3 = E4. For the remaining
d3p3 integral, we can decompose it spherically into d3p3 = dΩ3 dp

′p′2, where p′ = |~p3| is
the magnitude and dΩ3 runs over the spherical direction of ~p3. The remaining energy delta
function allows us to do the dp′ integral. Specifically, it takes the form

∫ ∞

0

dp′ δ
(

2E − 2

√

m2 + p′2
)

F(p′) =

∫ ∞

0

dp′ δ(p′ − p)

∣

∣

∣

∣

d

dp′

(

2

√

m2 + p′2
)
∣

∣

∣

∣

−1

F(p′)

=

√

m2 + p2

2p
F(p) , (6)

where F(p′) stands for the p′ dependence of the rest of the integrand. In the first line we used
the delta function identity of Eq. (1) together with p′ = p being the only positive solution

of 2E − 2
√

m2 + p′2 = 0.

Putting all these pieces together, the cross section is

σ =
1

2v

1

4E2

1

(2π)2

∫

d3p3
2E3

∫

d3p4
2E4

δ(4)(p1 + p2 − p3 − p4) |M|2 (7)

=
1

32 v

1

(2π)2
1

E2

∫

dΩ3
1

E2

E

2p
p2 |M|2 (8)

=
1

v

1

64

1

(2π)2
1

E2

p

E

∫

dΩ3 |M|2 (9)

=
λ2

128π

1

E2
. (10)

In the last line we have used |M|2 = λ2, v = 2p/E, and
∫

dΩ3 = 4π. More generally, the
matrix element will have an angular dependence and the integral over solid angle will not
be trivial. Note as well that dΩ3 runs over angles relative to the initial φ direction (which
we chose to be the z-axis). Thus, the differential cross section dσ/dΩ = d2σ/[d(cos θ)dφ] is
given by the expression of Eq. (9) above but with the integral over Ω3 left out.

2 Example: e−e+ → µ−µ+ in QED

We computed the matrix element for e−(p1, s1) + e+(p2, s2) → µ−(p3, s3) + µ+(p4, s4) in
notes-01, where {pi, si} label the momentum and spin state of the i-th particle. At leading
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Figure 1: Leading Feynman diagram for e+e− → µ+µ−.

order in the electromagnetic there is the single Feynman diagram shown in Fig. 1. To obtain
the matrix element, a standard approach is to track backwards along fermion lines and
collect the various fermionic and vertex factors along the way. Once this has been done for
all fermion lines, the propagators and external spin factors for all other lines in the diagram
can be added. Doing so here yields

−iM = [ū3 (ieγ
µ) v4] [v̄2 (ieγ

ν) u1]

(

−i ηµν
p2

)

, (11)

where p = (p1 + p2), ui and vi are the external spin polarizations of the i-th fermion (with
momentum pi and spin stata si), and we have set Qe = Qµ = −1. Note that each term
in square brackets is a scalar in Dirac space, having the form of row vector times matrix
times column vector. These two terms are connected (in their Lorentz indices) by the photon
propagator.

To find the cross section for this process, we need to specify the fermion spin polarizations,
compute the result, and square it within the cross section formula. The result would be the
cross section for electrons and positrons with specific initial spin states to scatter into muons
and antimuons with specific final spin states. However, in most experiments the incident
beams are typically unpolarized (having collections of uniformly random spins) and the spins
of the final state particles are not measured. To determine the effective total cross section
in this type of scenario, we should average over initial spin states and sum over final spin
states. It turns out that there are a number of simplifying tricks for doing this that make
use of the completeness properties of spin polarizations. We collect the most important of
these for Dirac spinors and photon polarizations in Appendix 3.

Returning to the specific problem at hand, we want

“|M|2
′′

≡
1

2
×

1

2
×

∑

s1,s2,s3,s4

|M(s1s2 → s3s4)|
2 (12)

=
1

4

(

e2

p2

)2
∑

{si}

ηµν(ū3γ
µv4)(v̄2γ

νu1)[ηαβ(ū3γ
αv4)(v̄2γ

βu1)]
∗ .

Let us first conjugate the 34 spinor piece. We have

(ū3γ
αv4)

∗ = (ū3γ
αv4)

† = v†4(γ
α)†γ0(u†3)

† (13)

= v†4γ
0γ0(γα)†γ0u3

= v̄4γ
αu3 .
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The 12 piece goes through similarly. Next, we assemble the 12 and 34 pieces and use the
spinor completeness relations. For the 34 part, we get

∑

s3,s4

(ū3γ
µv4) (v̄4γ

αu3) (14)

=
∑

s3

∑

s4

ū3a γ
µ
ab v4b v̄4c γ

α
cd u3d (15)

= (p/+m3)da γ
µ
ab (p/−m4)bc γ

α
cd

= tr[(p/+m3)γ
µ(p/−m4)γ

α]

= 4(pµ3p
α
4 + pα3 p

µ
4 − p3 ·p4η

µα)− 4m3m4η
µα . (16)

We have written out the spinor indices in gory detail here, but you can skip this once you
get the hang of it. Combining with the 12 piece and contracting indices, the result is

“|M|2
′′
= 8

(

e2

p2

)2

[(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3) + (. . .)] , (17)

where (. . .) refers to stuff that depends on the masses me and mµ. For now, let us focus
on the high-energy limit p2 ≫ m2

µ, m
2
e so that the masses can be neglected. Working in

the centre-of-mass (CM) frame, we have (after applying energy and momentum conservation
and choosing a nice set of axes)

p1 = (q, 0, 0, q) , p2 = (q, 0, 0,−q) (18)

p3 = (q, q sin θ, 0, q cos θ) , p4 = (q,−q sin θ, 0,−q cos θ) (19)

The summed and squared matrix element is then

“|M|2
′′
= e4 (1 + cos2 θ) . (20)

This can be used to compute the unpolarized cross section.

3 Example: e−γ → e−γ in QED

This process is usually called Compton scattering. The full differential cross section at
leading order in α is given by the Klein-Nishina formula, which reduces to the Thomson
cross section at low-energies in the electron rest frame. Since the full calculation is a bit
tedious, we will only present some highlights of it, with the main goal being to illustrate how
to handle external photons.

Labelling the momenta by e−(p1) + γ(p2) → e−(p3) + γ(p4), there are two Feynman
diagrams for the process at leading order in the electromagnetic coupling, shown in Fig. 2.
The full amplitude is the sum of them, and can be written in the form

−iM = −i (Mµν
a +Mµν

b ) ǫ∗µ(p4) ǫν(p2) , (21)
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Figure 2: Leading Feynman diagrams for Compton scattering, e−γ → e−γ.

where ǫµ(pi) is a photon polarization vector and

−iMµν
a = ū3(ieγ

µ)
i(p/+m)

p2 −m2
(ieγν)u1 (22)

−iMµν
b = ū3(ieγ

ν)
i(k/+m)

k2 −m2
(ieγµ)u1 , (23)

with p = (p1+p2) and k = (p1−p4). Note that both amplitudes add together constructively,
but have different orderings of Dirac matrices and internal momenta. To get the full
unpolarized summed and squared matrix element, we follow the usual procedure and average
over initial states and sum over final ones. This gives1

“|M|2” =
1

2
×

1

2

∑

λ2,λ4

∑

s1,s3

(Mµν
a +Mµν

b ) ǫ∗µ(p4) ǫν(p2)
(

M∗αβ
a +M∗αβ

b

)

ǫα(p4) ǫ
∗
β(p2)

(24)

=
1

4

∑

λ2

ǫν(p2) ǫ
∗
β(p2)

∑

λ4

ǫ∗µ(p4) ǫα(p4)
∑

s1,s3

(Mµν
a +Mµν

b )
(

M∗αβ
a +M∗αβ

b

)

.

The sums on λ2 and λ4 here run over the possible polarization states of the initial and final
photons, while the sums on s1 and s3 run over the electron spin states. Note that both the
initial electron and photon each have two independent states which produce an overall factor
of 1/4 = 1/2× 1/2 in the average. To handle the polarization sums, we use the photon trick
listed in Appendix 3 to give

∑

λ2

ǫ∗ν(p2) ǫβ(p2) = −ηνβ , (25)

with a corresponding result of (−ηµα) for the λ4 sum. The fermion pieces are more involved
and require a good deal of Dirac algebra. For example, the (aa) term gives

Mµν
a M∗αβ

a =

(

e2

p2 −m2

)2

tr
[

(p/3 +m)γµ(p/+m)γν(p/1 +m)γβ(p/+m)γα
]

(26)

The trace can be done by brute force, but it can also be simplified using the Dirac equation
and anticommutation relations. This is left to the intrepid reader.

1When squaring, make sure to use different dummy indices in the two factors to avoid mixing them up!
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Appendix A: Cross Section and Decay Rate Formulas

For 2 → n scattering with two initial particles colliding to make a final state with n particles,
let us label the initial 4-momenta by p1 and p2 and the final 4-momenta by p3, . . . , pn+2.
The formula for the scattering cross-section is

σ =
S

v

1

4E1E2

∫

d3p3
(2π)32E3

. . .

∫

d3pn+2

(2π)32En+2
(2π)4δ(4)(k1 + k2 −

n+2
∑

i=3

pi) |M|2 , (27)

where v =
√

(p1 · p2)2 −m2
1m

2
2

/

E1E2 is the magnitude of the relative velocity of the

incident particles, and S is a combinatoric factor equal to one times 1/k! for every set of k
identical particles in the final state. Derivations of this result can be found in the textbooks
by Peskin&Schroeder [2] and Srednicki [4].

The formula for the partial decay rate of an unstable particle of mass M at rest to decay
to a final state containing n particles (M → 1 + 2 + . . .+ n) is [2]

Γ(M → n) =
S

2M

∫

d3p1
2E1(2π)3

. . .

∫

d3pn
2En(2π)3

(2π)4δ(4)(pM −
n

∑

i=1

pi) |M|2 , (28)

where |M|2 is the correspondingM → n amplitude defined in the same way as for scattering,
and S is the symmetry factor. The total decay rate is the sum of all the partial decay widths,

Γ =
∑

f

Γf , (29)

where the sum runs over all possible final states. In natural units, the lifetime of the unstable
particle in its rest frame is τ = 1/Γ.

Appendix B: Dirac (and Pauli) Matrices

It is useful to generalize the 2× 2 Pauli matrices to

σ0 = I, σi = σ1,2,3 (30)

with

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (31)

Recall that

σiσj = δijI+ iǫijkσk . (32)

Let us also define

σµ = (I, ~σ) , σ̄µ = (I,−~σ) . (33)
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In terms of these, the 4× 4 Dirac matrices in the so-called chiral representation are

γµ =

(

0 σµ

σ̄µ 0

)

. (34)

They satisfy the familiar relation

{γµ, γν} = 2ηµν . (35)

We also define

γ5 = γ5 = iγ0γ1γ2γ3 = −
i

4!
ǫµνλκγµγνγλγκ . (36)

In the chiral representation, one finds

γ5 =

(

−I 0
0 I

)

. (37)

We will also encounter the chiral projectors PL = (1− γ5)/2 and PR = (1 + γ5/2).
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Appendix C: QED Feynman Rules and Spin Tricks

QED is the theory of charged fermions interacting with the photon. It consists of a massless
vector for the photon and a set of charged fermions. The Lagrangian is [2]

L = −
1

4
FµνF

µν +
∑

i

ψ̄i[iγ
µ(∂µ + ieQiAµ)−mi]ψi (38)

Sometimes we will write Dµ = (∂µ + ieQiAµ), which is called a covariant derivative.

From this Lagrangian one can derive the following Feynman rules:

−i
2

(p  − m  )2 2

Incoming Fermion

Incoming Anti−Ferm

Outgoing Fermion

Outgoing Anti−Ferm

Incoming Photon

Outgoing Photon 

Internal Photon

Vertex

u(p,s)

v(p,s)

u(p,s)

v(p,s)

    (p,   )

    (p,   )ε

ε

λ

λ

µ

µ
∗

µν

i(p + m)

−ieQγµ

ps

s

s

s

p

p

p

µ, λ

µ, λ

Internal Fermion

µ

µ ν

p

p

p

p
η p

Here, u(p, s) and v(p, s) are 4 × 1 fermion and anti-fermion spin vectors for 4-momentum p
and spin state s, with ū = u†γ0. We have also written p/ = pµγ

µ. For photons, ǫµ(p, λ) is the
polarization 4-vector for the polarization state λ. Recall that photons have two independent
transverse polarizations.
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Spinor Tricks:

(p/−m) u(p, s) = 0 = (p/+m) v(p, s) (39)
∑

s

ua(p, s)ūb(p, s) = (p/+m)ab (40)

∑

s

va(p, s)v̄b(p, s) = (p/−m)ab (41)

γ0(γµ)†γ0 = γµ (42)

tr(γµγν) = 4ηµν (43)

tr(γµγνγλγκ) = 4(ηµνηλκ + ηµκηνλ − ηµληνκ) (44)

tr(γµγνγλγκγ5) = −4iǫµνλκ (45)

{γµγν} = 2ηµν (46)

{γ5, γµ} = 0 (47)

Additional tricks can be found in Ref. [2]. Note that the subscripts in Eqs.(40,41) are Dirac
spinor indices.

Photon Tricks:

2
∑

λ=1

ǫµ(p, λ)ǫ
∗
ν(p, λ) = −ηµν + (stuff you can ignore) (48)

pµǫµ(p, λ) = 0 (49)
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