PHYS 528 Homework #2

Due: Feb.4, 2021

- 1. Work out the differential cross section $d\sigma/d(\cos\theta)$ for the process $e^+e^- \to \mu^+\mu^-$, where θ is the CM-frame angle between the incident electron and the outgoing muon. You may work in the limit that $p^2 \gg m_e^2$ and ignore the electron mass $(m_e \to 0)$, but do keep the full dependence on the muon mass (instead of dropping it like we did in class). Hint: note that the differential cross is what you get from the cross section formula but without doing the final integral over the outgoing angle θ .
- 2. Compute the summed and squared matrix element for $e^-\mu^- \to e^-\mu^-$ scattering to leading order in QED at very high energy, $E_{CM} \gg m_{\mu}$, m_e . This implies that you can neglect the fermion masses.

(Optional: use this to compute the differential and total cross sections.)

- 3. Consider a massive Z' vector boson that couples to electrons with a vertex factor equal to $-ig'\gamma^{\mu}$.
 - a) A massive vector has three independent polarization states. These can represented by any three independent unit 4-vectors $\epsilon_{\mu}(p,\lambda)$ satisfying the constraints $p^{\mu}\epsilon_{\mu}=0$ and $\epsilon_{\mu}^{*}(p,\lambda)\epsilon^{\mu}(p,\lambda')=-\delta_{\lambda\lambda'}$, where p^{μ} is the four-momentum of the vector boson and $\lambda=1,2,3$ labels the three different polarizations. Find a simple set of polarization vectors in the rest frame of the massive vector. Show that they satisfy the constrained completeness relation

$$\sum_{\lambda} \epsilon_{\mu}(p,\lambda)\epsilon_{\nu}^{*}(p,\lambda) = -\eta_{\mu\nu} + p_{\mu}p_{\nu}/m_{Z'}^{2}.$$

b) Compute the total unpolarized decay width for $Z' \to e^+e^-$. For this, use the vertex and the completeness relation stated above. Keep the full dependence on the masses of the Z' and the electron.