# Discovering Dark Matter by Reheating Pasta



Nirmal Raj TRIUMF

with Javier Acevedo, Joe Bramante, Rebecca Leane

**1911.06334,** accepted at JCAP

based partly on collaborations with Masha Baryakhtar | Aniket Joglekar | Shirley Li Tim Linden | Flip Tanedo | Hai-Bo Yu

11 Mar 2020, New Techniques for Dark Matter Discovery, TRIUMF

### Dark reality





Can we detect its putative non-gravitational interactions?

#### Earth-bound searches



### A proposal

$$L \propto (\gamma - 1) m_{\rm DM}$$

#### kinetic heating of neutron stars



M Baryakhtar, J Bramante, S Li, T Linden, N. Raj Phys. Rev. Lett. 119, 131801 (2017)

#### A proposal

$$L \propto (\gamma - 1)m_{\rm DM} + m_{\rm DM}$$

kinetic heating + annihilation

# Minimum signature

# Possible bonus

M Baryakhtar, J Bramante, S Li, T Linden, N. Raj Phys. Rev. Lett. 119, 131801 (2017)



#### (1.5 solar mass, 10 km star)



James Webb



Thirty Meter

#### kinetic heating

1750 K

+ annihilation

2480 K

### <u>telescope time for $2\sigma$ sensitivity</u>



$$9 \times 10^3 \sec\left(\frac{d}{10 \mathrm{pc}}\right)^4$$

 $7 \times 10^4 \sec\left(\frac{d}{10\mathrm{pc}}\right)^4$  $2 \times 10^3 \sec\left(\frac{d}{10 \mathrm{pc}}\right)^4$ 

M Baryakhtar, J Bramante, S Li, T Linden, N. Raj Phys.Rev.Lett. 119, 131801 (2017)

Annihilation saves observation time (= by a factor of >10!

#### Increase in acreage

#### M Baryakhtar, J Bramante, S Li, T Linden, N. Raj Phys. Rev. Lett. 119, 131801 (2017)



## What happened next

| <ul> <li>32. Neutron stars at the dark matter direct detection frontier<br/>Nirmal Raj (Notre Dame U.), Philip Tanedo, Hai-Bo Yu (UC, Riverside). Jul 28, 2017. 6 pp.<br/>Published in Phys.Rev. D97 (2018) no.4, 043006</li> <li>26. Reheating neutron stars with the annihilation of self-interacting dark matter<br/>Chian-Shu Chen (Tamkang U.), Yen-Hsun Lin (Taiwan, Natl. Cheng Kung U.). Apr 10, 2018. 16 pp.<br/>Published in JHEP 1808 (2018) 069</li> <li>21. Heating up Neutron Stars with Inelastic Dark Matter<br/>Nicole F. Bell, Giorgio Busoni, Sandra Robles (Melbourne U.). Jul 8, 2018. 20 pp.<br/>Published in JCAP 1809 (2018) 018</li> <li>2. Heating neutron stars with GeV dark matter<br/>Wai-Yee Keung (Illinois U., Chicago), Danny Marfatia (Hawaii U.), Po-Yan Tseng (IPAP, Seoul &amp; Yonsei U.). Jan 24, 2020. 24 pp.<br/>e-Print: arXiv:2001.09140 [hep-ph]   PDF</li> </ul> | particle model<br>interpretations<br><b>nucleon targets</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <ul> <li>18. New Analysis of Neutron Star Constraints on Asymmetric Dark Matter<br/>Raghuveer Garani, Yoann Genolini, Thomas Hambye (Brussels U.). Dec 20, 2018. 42 pp.<br/>Published in JCAP 1905 (2019) 035</li> <li>15. Capture of Leptophilic Dark Matter in Neutron Stars<br/>Nicole F. Bell (Melbourne U.), Giorgio Busoni (Heidelberg, Max Planck Inst.), Sandra Robles (Melbourne U.). Apr 22, 2019. 26 pp.<br/>Published in JCAP 1906 (2019) 054</li> <li>9. Dark matter interactions with muons in neutron stars<br/>Raghuveer Garani (Brussels U.), Julian Heeck (UC, Irvine). Jun 24, 2019. 8 pp.<br/>Published in Phys.Rev. D100 (2019) no.3, 035039</li> </ul>                                                                                                                                                                                                                                   | lepton targets                                              |
| 4. Relativistic capture of dark matter by electrons in neutron stars<br>Aniket Joglekar (UC, Riverside), Nirmal Raj (TRIUMF), Philip Tanedo, Hai-Bo Yu (UC, Riverside). Nov 29, 2019. 6 pp.<br>UCR-TR-2019-FLIP-NCC-1701-B<br>e-Print: arXiv:1911.13293 [hep-ph]   PDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |
| 17. Detecting Dark Matter with Neutron Star Spectroscopy<br>Daniel A. Camargo, Farinaldo S. Queiroz, Riccardo Sturani (IIP, Brazil). Jan 16, 2019. 22 pp.<br>Published in JCAP 1909 (2019) no.09, 051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | astronomy                                                   |
| <ol> <li>Dark Matter Heating vs. Rotochemical Heating in Old Neutron Stars<br/>Koichi Hamaguchi (Tokyo U. &amp; Tokyo U., IPMU), Natsumi Nagata, Keisuke Yanagi (Tokyo U.). May 8, 2019. 6 pp.<br/>Published in Phys.Lett. B795 (2019) 484-489</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nuclear<br>astrophysics                                     |





Are we barking down the wrong stellar region?



#### structure of the <u>crust</u>, better understood than <u>core</u>





#### Climbing down the layers

deeper =>
knowledge of structure
more uncertain



worthwhile to investigate capability of every layer to capture dark matter



#### Crust vs low mass dark matter



capture by exciting single superfluid phonon:

energy deposited > halo KE [ $q \ge phonon \ speed$  [ $m_{DM} \ (10^{-3} \ c)^2$ ] ~  $m_{DM} \ v_{esc} \ge 0.04 \ c$ ]

$$\sigma_{\text{phonon}}(q) = S_{\text{phonon}}(q)\sigma_{n\chi}$$

$$\downarrow$$

$$q/(2m_n \text{ x phonon speed})$$

#### Crust vs WIMPs & heavier dark matter



#### Crust vs WIMPs & heavier dark matter

capture by (quasi-)elastic scattering on *nucleons* energy transfer < **10<sup>-38</sup>** nucleon here lies the thermal Higgsino binding energy **Outer Crust** ~ 10 MeV 10<sup>-40</sup> Inner Crust (no pasta) incoherent scatters **Nuclear Pasta 10**<sup>-42</sup> **Full Crust** coherent quasi-elastic response peak 10<sup>-44</sup> **Neutrons in the Core** scatters neutron star mass =  $1.8 M_{\odot}$ , radius = 12.5 km**10**<sup>-46</sup> **10**<sup>5</sup> 0.1 10 1000 *m*<sub>DM</sub> (GeV) capture by pasta:  $\sigma_{\text{pasta}}(q) = S_{\text{pasta}}(q) \ \sigma_{n\chi}$ response function describing correlations among *nucleons* in pasta

#### Neutron star crust vs Earth crust



#### versus direct detection:



#### Annihilations

Annihilation saves observation time (= \$\$) by a factor of >10!

But how much annihilation is guaranteed?

<u>Asymmetric</u> — none <u>p-wave</u> — very suppressed Does DM even thermalize with the star?

Affects DM spatial distribution, hence annihilation rate:



If DM only touches **crust**, star effectively **hollow shell**:



Would the DM cloud filling it annihilate efficiently?

#### Annihilations

Annihilation saves observation time (= by a factor of >10!

**But how much annihilation is guaranteed?** 

<u>Asymmetric</u> — none — very suppressed p-wave

#### *Does DM even thermalize with the star?*

Affects DM spatial distribution, hence annihilation rate:



If DM only touches crust, star effectively hollow shell:

Would the DM cloud filling it annihilate efficiently?



#### Takeaways

Dark kinetic heating of neutron stars via scattering on non-relativistic nucleonic or ultra-relativistic electronic targets, in the less-understood core or fail-safe crust, seriously advances direct detection frontiers.

• Capture in the crust depends on

| kinematics | <ul> <li>phonon excitation for sub-MeV masses</li> <li>quasi-elastic nucleon scattering<br/>for masses &gt; 100 MeV</li> </ul>         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| dynamics   | <ul> <li>larger cross section =&gt; upper layers</li> <li>resonant enhancement due to pasta structure<br/>near 100 MeV mass</li> </ul> |

• Pasta is the best trap (densest layer) for masses > 100 MeV

• Exoplanet observers like <u>James Webb</u> and <u>Thirty Meter Telescope</u> can unmask the heating signal with a day's exposure.

# Thank you!

Questions?

#### Observation prospects

#### Radio telescopes (design: pulsar discovery)

#### Infrared telescopes (design: exoplanet atmosphere study)



CHIME



FAST

100 old, cold neutron stars in the local 50 pc.

O. Blaes, P. Madau (1993)



James Webb



European Extremely Large



Thirty Meter







#### Brightness diagnosis



#### Telling between crust-only and core heating

