Dark matter interactions with muons in neutron stars

Julian Heeck

TRIUMF Theory Workshop

3/11/2020

Unterstützt von / Supported by

UCI University of California, Irvine

Alexander von Humboldt Stiftung/Foundation

Dark matter couplings

- Typical WIMP model:
 - Thermal production via coupling to *any* SM particle.
 - Strong constraints on couplings to gauge bosons and first-gen fermions from direct detection.

Dark matter couplings

- Typical WIMP model:
 - Thermal production via coupling to *any* SM particle.
 - Strong constraints on couplings to gauge bosons and first-gen fermions from direct detection.
- Easy way out:
 - DM couplings only to higher generations!
 - Simple realization: DM charged under $U(1)_{L_{\mu}-L_{\tau}}$. [Cirelli, Kadastik, Raidal, Strumia, 0809.2409; Baek, Ko, 0811.1646]
 - Anomaly-free $U(1)_{L_{\mu}-L_{\tau}}$ interesting independently! [He, Joshi, Lew, Volkas, '91; Foot, '91; JH, Rodejohann, '11]

Benchmark: light Z'. Only $Z' \rightarrow \nu_{\mu} \bar{\nu}_{\mu}, \nu_{\tau} \bar{\nu}_{\tau}$ allowed.

Dark matter from $L_{\mu} - L_{\tau}$?

- DM under $U(1)_{L_{\mu}-L_{\tau}}$: Z' mediator, stability, asymmetry(?).
- Z' mediator could be light: DM DM \rightarrow Z' Z'.
 - Large DM self interactions? [Kamada+, 1805.00651]
- No constraints from direct detection...

Dark matter from $L_{\mu} - L_{\tau}$?

- DM under $U(1)_{L_{\mu}-L_{\tau}}$: Z' mediator, stability, asymmetry(?).
- Z' mediator could be light: DM DM \rightarrow Z' Z'.
 - Large DM self interactions? [Kamada+, 1805.00651]
- No constraints from direct detection...
 - ... but could still be captured in neutron stars!
 - NS contain 10⁵⁷ neutrons and 10⁵⁵ muons.
 - Capture for $\sigma_{DM\mu} > 5 \times 10^{-43} \text{cm}^2$.
 - Also take Pauli blocking and velocities into account.

[**JH**, Garani, 1906.10145]

[Garani, Genolini, Hambye, 1812.08773; Bell, Busoni, Robles, 1904.09803]

(Muonic) DM in neutron stars

- Easily saturate the capture rate for WIMPs. Then what?
- Asymmetric DM: collect enough to form black hole?
 - Fermi pressure. 🗲
 - Repulsive self-interactions. 🗲

[Kouvaris, Tinyakov, '10, '11]

[Bell, Melatos, Petraki, '13, Bramante, Fukushima, Kumar, '13]

(Muonic) DM in neutron stars

• Easily saturate the capture rate for WIMPs. Then what?

(Muonic) DM in neutron stars

- Easily saturate the capture rate for WIMPs. Then what?
- Asymmetric DM: collect enough to form black hole?
 - Fermi pressure. 左 [Kouvaris, Tinyakov, '10, '11]
 - Repulsive self-interactions. 🗲

[Bell, Melatos, Petraki, '13, Bramante, Fukushima, Kumar, '13]

• Always: infalling DM heats the NS! (from < 1000K to ~2000K)

[Baryakhtar, Bramante, Li, Linden, Raj, '17; Raj, Tanedo, Yu, '17; Bell, Busoni, Robles, '18/'19]

- Symmetric DM: more heating from DM annihilations.
- Measure IR spectrum of nearby old NS with JWST?

 $m_{Z'} = 100 \text{ GeV}, g' = 0.1$

$$m_{Z'} = 10 \text{ MeV}, g' = 5 \times 10^{-4}$$

Summary

- $L_{u} L_{\tau}$ interesting U(1) gauge group:
 - Anomaly free & weakly constrained.
 - Could explain (g-2)_u or $b \rightarrow s\mu\mu$ anomalies.
- $L_{u} L_{\tau}$ DM even better:
 - (Light) Z' mediator, stability, asymmetry (?).
 - (In)direct detection suppressed.
 - DM still captured in neutron stars \rightarrow heating!
 - Light Z' allows for self-interactions $\sigma/m \sim 1 \, {\rm cm^2/g}$.
 - → Resolves small-scale structure anomalies!

Backup

Kinetic mixing

• Every U(1)' has kinetic mixing with hypercharge,

$$\mathcal{L} = -\frac{1}{4}\mathsf{F}_{\mu\nu}\mathsf{F}^{\mu\nu} - \frac{1}{4}\mathsf{F}'_{\mu\nu}\mathsf{F}'^{\mu\nu} - \frac{1}{2}\,\epsilon\,\mathsf{F}'_{\mu\nu}\mathsf{F}^{\mu\nu},$$

plus loop-level mixing. [Galison, Manohar, '84; Holdom, '86]

• Couples light Z' to electric current; important for $L_{\mu} - L_{\tau}$, e.g. in direct detection:

$$\sigma_{\chi N} = \frac{Z^2}{A^2} \frac{m_{\mathrm{red},\chi N}^2}{\pi m_{Z'}^4} \left(g' q_{\chi} \right)^2 \left[e \epsilon + \frac{\alpha g'}{3\pi} \log \left(\frac{m_{\tau}^2}{m_{\mu}^2} \right) \right]^2$$

[Kopp, Niro, Schwetz, Zupan, '09; Altmannshofer, Gori, Profumo, Queiroz, '09]

TRIUMF 2020